\[\boxed{\mathbf{804\ (804).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{5} + a_{10} + a_{12} + a_{15} = 50\]
\[a_{1} + 4d + a_{1} + 9d + a_{1} +\]
\[+ 11d + a_{1} + 14d = 50\]
\[4a_{1} + 38d = 50\ \ \ |\ :2\]
\[2a_{1} + 19d = 25\]
\[S_{20} = \frac{2a_{1} + 19d}{2} \cdot 20 =\]
\[= \frac{25}{2} \cdot 20 = 25 \cdot 10 = 250\]
\[Ответ:250.\]
\[\boxed{\mathbf{804.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ y = \frac{x^{3} + 4x^{2} - 5x}{x}\]
\[\ y = x^{2} + 4x - 5;\ \ x \neq 0\]
\[x_{0} = - \frac{4}{2} = - 2;\ \ y_{0} = 4 - 8 -\]
\[- 5 = - 9 \Longrightarrow \ \ ветви\ вверх.\]
\[2)y = \frac{x^{3} + 8}{x + 2} - 3\ \ \]
\[y = \frac{(x + 2)\left( x^{2} - 2x + 4 \right)}{(x + 2)} - 3\]
\[y = x^{2} - 2x + 4 - 3\]
\[y = x^{2} - 2x + 1;\ \ x \neq - 2\]
\[y = (x - 1)^{2} \Longrightarrow \ перенос\ \]
\[графика\ y = x^{2}\ на\ 1\ единицу\ \]
\[вправо.\]
\[3)\ y = \frac{x^{4} - 1}{x^{2} - 1}\]
\[\ y = \frac{\left( x^{2} - 1 \right)\left( x^{2} + 1 \right)}{\left( x^{2} - 1 \right)}\]
\[y = x² + 1\]
\[x^{2} \neq 1,\ \ x \neq - 1,\ \ x \neq 1\]
\[Перенос\ графика\ y = x^{2}на\ \]
\[1\ единицу\ вверх.\]
\[4)\ y = \frac{x^{4} - 13x^{2} + 36}{x^{2} - 9}\]
\[y = \frac{\left( x^{2} - 4 \right)\left( x^{2} - 9 \right)}{\left( x^{2} - 9 \right)}\]
\[y = x^{2} - 4;\ \ \ \ \ x^{2} \neq 9,\]
\[\ \ x \neq \pm 3\]
\[График\ y = x^{2}переносим\ на\]
\[\ 4\ единицы\ вниз.\]