\[\boxed{\mathbf{801\ (801).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{1} = 100;\ \ S_{6} = 5 \cdot S_{7 - 12}\]
\[S_{6} = \frac{2cc + 5d}{2} \cdot 6 =\]
\[= (2 \cdot 100 + 5d) \cdot 3 =\]
\[= (200 + 5d) \cdot 3\]
\[(200 + 5d) \cdot 3 = 5 \cdot S_{7 - 12}\]
\[S_{7 - 12} = \frac{2a_{7} + 5d}{2} \cdot 6 =\]
\[= \left( 2 \cdot \left( a_{1} + 6d \right) + 5d \right) \cdot 3 =\]
\[= \left( 2a_{1} + 12d + 5d \right) \cdot 3 =\]
\[= \left( 2a_{1} + 17d \right) \cdot 3 =\]
\[= (200 + 17d) \cdot 3\]
\[(200 + 5d) \cdot 3 =\]
\[= 5 \cdot (200 + 17d) \cdot 3\ \ \ \ \ |\ :3\]
\[200 + 5d = 1000 + 85d\]
\[80d = - 800,\ \ d = - 10\]
\[Ответ:\ d = - 10.\]
\[\boxed{\mathbf{801.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[y = ax^{2} + bx + c;\ \ (0;10);\ \]
\[\text{\ \ }\left( x_{0};y_{0} \right) = (6;\ - 2)\]
\[10 = 0 + 0 + c \Longrightarrow \ \ c = 10\]
\[- \frac{b}{2a} = 6 \Longrightarrow \ \ b = - 12a\]
\[- 2 = 36a + 6b + 10\]
\[- 2 = 36a + 6 \cdot ( - 12a) + 10\]
\[- 2 = 36a - 72a + 10\]
\[36a = 12\]
\[a = \frac{1}{3} \Longrightarrow \ \ b = - 12 \cdot \frac{1}{3} = - 4\]
\[Ответ:a = \frac{1}{3};\ \ b = - 4;\ \ c = 10.\]