\[\boxed{\mathbf{749\ (749).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Запишем\ прогрессию:180{^\circ};\ \]
\[360{^\circ};\ 540{^\circ};\ldots;180{^\circ}(n - 2).\ \]
\[d = 360 - 180 = 180 \Longrightarrow\]
\[\Longrightarrow \ \ арифметическая\]
\[\ прогрессия.\]
\[Ответ:да.\]
\[\boxed{\mathbf{749.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ прогрессия\ b_{1},\ b_{2},\ b_{3};\]
\[\text{\ \ }тогда:\ \]
\[b_{1} + b_{2} = 8 \cdot \left( S - b_{1} - b_{2} \right)\]
\[b_{1}(1 + q) =\]
\[= 8b_{1}\left( \frac{1}{1 - q} - 1 - q \right)\ \ \ \ \ |\ :b_{1}\]
\[1 + q = 8 \cdot \left( \frac{1}{1 - q} - 1 - q \right)\]
\[1 + q = \frac{8}{1 - q} - 8 - 8q\]
\[q - \frac{8}{1 - q} + 8q = - 8 - 1\]
\[9q - \frac{8}{1 - q} = - 9\]
\[9q - 9q^{2} - 8 = - 9 + 9q\]
\[- 9q^{2} = - 1\ \ \]
\[q^{2} = \frac{1}{9} \Longrightarrow \ \ q = \pm \frac{1}{3}\]
\[Ответ:\ q = \pm \frac{1}{3}.\]