\[\boxed{\mathbf{742\ (742).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ по\ увеличению\ углы\]
\[\ треугольника\ x_{1},\ x_{2},\ x_{3},\ \]
\[тогда\ \ x_{2} = \frac{x_{1} + x_{3}}{2}.\]
\[По\ теореме\ о\ сумме\ углов\]
\[\ треугольника:\text{\ \ }x_{1} + x_{2} + x_{3} =\]
\[= 180{^\circ},\ тогда\ \]
\[2x_{2} + x_{2} = 180{^\circ}\ \]
\[3x_{2} = 180\ \]
\[x_{2} = 60.\]
\[Ответ:средний\ по\ величине\]
\[\ угол\ равен\ 60{^\circ}.\]
\[\boxed{\mathbf{742.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[S = 2;\ \ S_{4} = 1\frac{7}{8}\]
\[S = \frac{b_{1}}{1 - q} = 2 \Longrightarrow \ \ b_{1} =\]
\[= 2 \cdot (1 - q)\]
\[S_{4} = \frac{b_{1}\left( q^{4} - 1 \right)}{q - 1} = 1\frac{7}{8}\text{\ \ \ }\]
\[\ \frac{b_{1}(q^{2} - 1)(q^{2} + 1)}{q - 1} = \frac{15}{8}\]
\[b_{1}(q + 1)\left( q^{2} + 1 \right) = \frac{15}{8}\]
\[\left\{ \begin{matrix} b_{1} = 2 \cdot (1 - q)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ b_{1}(q + 1)\left( q^{2} + 1 \right) = \frac{15}{8} \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\text{\ \ \ }\left\{ \begin{matrix} b_{1} = 2 \cdot (1 - q)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ b_{1} = \frac{15}{8 \cdot (q + 1)\left( q^{2} + 1 \right)} \\ \end{matrix} \right.\ \]
\[\frac{15}{8 \cdot (q + 1)\left( q^{2} + 1 \right)} = 2 \cdot (1 - q)\]
\[15 = 16 \cdot (q + 1)(1 - q)\left( q^{2} + 1 \right)\]
\[15 = 16 \cdot \left( 1 - q^{2} \right)\left( q^{2} + 1 \right)\]
\[15 = 16 \cdot \left( 1 - q^{4} \right)\]
\[1 - q^{4} = \frac{15}{16}\]
\[q^{4} = 1 - \frac{15}{16},\ \ q^{4} = \frac{1}{16},\]
\[\ \ q = \pm \frac{1}{2}\]
\[при\ \ q = \frac{1}{2} \Longrightarrow \ \ b_{1} =\]
\[= 2 \cdot (1 - q) =\]
\[= 2 \cdot \left( 1 - \frac{1}{2} \right) = 2 \cdot \frac{1}{2} = 1;\]
\[при\ q = - \frac{1}{2} \Longrightarrow \ \ b_{1} =\]
\[= 2 \cdot \left( 1 + \frac{1}{2} \right) = 2 \cdot \frac{3}{2} = 3.\]
\[Ответ:\ b_{1} = 1;\ q = \frac{1}{2}\ или\ \]
\[\text{\ \ }b_{1} = 3;\ \ q = - \frac{1}{2}.\]