\[\boxed{\mathbf{740\ (740).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[(a + b)^{2},\ \ \ a^{2} + b^{2},\ \ \ (a - b)^{2}\]
\[a_{n} = \frac{a_{n - 1} + a_{n + 1}}{2},\]
\[\text{\ \ }докажем,\ что:\]
\[\frac{(a + b)^{2} + (a - b)^{2}}{2} = a^{2} + b^{2}\text{\ \ \ }\]
\[\ | \cdot 2\]
\[(a + b)^{2} + (a - b)^{2} =\]
\[= 2 \cdot \left( a^{2} + b^{2} \right)\]
\[a^{2} + 2ab + b^{2} + a^{2} - 2ab +\]
\[+ b^{2} = 2a^{2} + 2b^{2}\]
\[2a² + 2b² = 2a² + 2b²\ \ \ \ \ |\ :2\]
\[a² + b² = a² + b²\]