\[\boxed{\mathbf{724\ (724).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ - 5,\ - 7,\ - 9,\ - 11,\ldots\]
\[a_{1} = 5;\ \ \ d = - 7 - ( - 5) = 2\]
\[\ a_{n} = a_{1} + d(n - 1) =\]
\[= - 5 - 2 \cdot (n - 1) =\]
\[= - 5 - 2n + 2 = - 3 - 2n\]
\[\ a_{n} = - 3 - 2n;\]
\[2)\ 2,\ 2\frac{1}{6},\ 2\frac{1}{3},\ 2\frac{1}{2},\ldots\]
\[a_{1} = 2;\ \ \ d = 2\frac{1}{6} - 2 = \frac{1}{6}\]
\[a_{n} = 2 + \frac{1}{6} \cdot (n - 1) =\]
\[= 2 + \frac{1}{6}n - \frac{1}{6} = 1\frac{5}{6} + \frac{1}{6}n\]
\[a_{n} = 1\frac{5}{6} + \frac{1}{6}n;\]
\[3)\ a²,\ 2a²,\ 3a²,\ 4a²,\ \ldots\]
\[a_{1} = a^{2};\ \ \ \ d = 2a^{2} - a^{2} = a^{2}\]
\[a_{n} = a^{2} + a^{2}(n - 1) =\]
\[= a^{2} + na^{2} - a^{2} = na^{2}\]
\[a_{n} = na^{2};\]
\[4)\ a + 3,\ a + 1,\ a - 1,\ a - 3,\ \ldots\]
\[a_{1} = a + 3;\ \ \ d = a + 1 -\]
\[- (a + 3) = a + 1 - a - 3 = - 2\]
\[\ a_{n} = a_{1} + d(n - 1),\]
\[a_{n} = a + 3 - 2 \cdot (n - 1) =\]
\[= a + 3 - 2n + 2 = a - 2n + 5.\]
\[\boxed{\mathbf{724.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ f(x) = 0,5x² - 3x +\]
\[+ 4 \Longrightarrow \ ветви\ вверх;\]
\[x_{0} = - \frac{b}{2a} = \frac{3}{2 \cdot 0,5} =\]
\[= 3 \Longrightarrow \ \ возрастает\ \lbrack 3;\ + \infty);\]
\[2)\ f(x) = - 3x^{2} - 2x +\]
\[+ 4 \Longrightarrow \ \ ветви\ вниз;\]
\[x_{0} = \frac{2}{- 3 \cdot 2} = - \frac{2}{6} =\]
\[= - \frac{1}{3} \Longrightarrow \ \ возрастает\]
\[\ \left( - \infty;\ - \frac{1}{3} \right\rbrack.\]