\[\boxed{\mathbf{716\ (716).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{n} = a_{1} + d(n - 1)\]
\[a_{1} = - 7,4;\ \ \ \ \ d = 1,8\]
\[a_{2} = - 7,4 + 1,8 = - 5,6\]
\[a_{3} = - 7,4 + 1,8 \cdot 2 =\]
\[= - 7,4 + 3,6 = - 3,8\]
\[a_{4} = - 7,4 + 1,8 \cdot 3 =\]
\[= - 7,4 + 5,4 = - 2\]
\[a_{5} = - 7,4 + 1,8 \cdot 4 =\]
\[= - 7,4 + 7,2 = - 0,2\]
\[\boxed{\mathbf{716.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[S_{n} = 4 \cdot \left( 3^{n} - 1 \right)\]
\[b_{1} = S_{1} = 4 \cdot \left( 3^{1} - 1 \right) =\]
\[= 4 \cdot 2 = 8\]
\[S_{2} = 4 \cdot \left( 3^{2} - 1 \right) = 4 \cdot 8 = 32\]
\[так\ как\ \ \ b_{1} + b_{2} = S_{2},\]
\[\text{\ \ }b_{2} = S_{2} - b_{1} = 32 - 8 = 24,\ \]
\[\ q = \frac{24}{8} = 3\]
\[b_{3} = b_{2} \cdot q = 24 \cdot 3 = 72\]
\[Ответ:b_{3} = 72.\]