\[\boxed{\mathbf{710\ (710).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[(0;0);\ \ A\ \left( - 1;\ - \frac{1}{4} \right).\]
\[y = ax^{2} + bx + c\]
\[(0;0),\ то\ x = - \frac{b}{2a} = 0,\]
\[\ \ b = 0,\ \ y = a \cdot 0 + 0 + c,\]
\[\ \ c = 0\]
\[тогда\ \ y = ax^{2}\]
\[a \cdot ( - 1)^{2} = - \frac{1}{4},\ \ a = - \frac{1}{4}\]
\[тогда\ \ \ y = - \frac{1}{4}x^{2}\]
\[Ответ:y = - \frac{1}{4}x^{2}.\]
\[\boxed{\mathbf{710.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[y_{n} = \frac{( - 2)^{n + 1}}{20}\]
\[y_{1} = \frac{( - 2)^{1 + 1}}{20} = \frac{4}{20} = \frac{1}{5}\text{\ \ }\]
\[y_{2} = \frac{( - 2)^{2 + 1}}{20} = - \frac{8}{20} = - \frac{2}{5}\]
\[q = \frac{- 2 \cdot 5}{5 \cdot 1} = - 2\]
\[S_{10} = \frac{\frac{1}{5} \cdot \left( ( - 2)^{10} - 1 \right)}{- 2 - 1} =\]
\[= \frac{\frac{1}{5} \cdot (1024 - 1)}{- 3} = \frac{1023}{5 \cdot ( - 3)} =\]
\[= - \frac{341}{5} = - 68,2.\]
\[Ответ:\ - 68,2.\]