\[\boxed{\mathbf{622\ (622).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \left\{ \begin{matrix} 2 - 6x < 14\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (x - 2)^{2} > (x + 4)(x - 4) + 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} 6x > - 12\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} - 4x + 4 - x^{2} + 16 - 1 > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > - 2\ \ \ \ \ \ \ \\ - 4x > - 19 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x > - 2 \\ x < \frac{19}{4} \\ \end{matrix} \right.\ \]
\[Ответ:x \in ( - 2;4,75).\]
\[2)\ \left\{ \begin{matrix} 2 - (3 - x) \leq 5 - 3 \cdot (x - 5) \\ 7 - 2 \cdot (x - 3) > 1 - (2x + 5) \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\ \left\{ \begin{matrix} 2 - 3 + x - 5 + 3x - 15 \leq 0 \\ 7 - 2x + 6 - 1 + 2x + 5 > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 4x \leq 21 \\ 17 > 0\ \ \ \\ \end{matrix} \right.\ ,\ \ x \leq \frac{21}{4}\]
\[Ответ:x \in ( - \infty;5,25\rbrack.\]
\[\boxed{\mathbf{622.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{1} = 105;\ \ d = 7;\ \ \]
\[a_{n} = 105 + 7 \cdot (n - 1) =\]
\[= 105 + 7n - 7 = 7n + 96\]
\[7n + 96 < 1000\]
\[7n < 904\]
\[n < 129,1 \Longrightarrow \ \ \ n = 128\]
\[S_{128} = \frac{2a_{1} + 127d}{2} \cdot 128 =\]
\[= (2 \cdot 105 + 127 \cdot 7) \cdot 64 =\]
\[= (210 + 889) \cdot 64 =\]
\[= 1099 \cdot 64 = 70\ 336.\]
\[Ответ:70\ 336. \]
\[\boxed{\mathbf{623.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{1} = 8,5;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S_{16} = 172\]
\[S_{16} = \frac{2a_{1} + 15d}{2} \cdot 16 =\]
\[= \left( 2a_{1} + 15d \right) \cdot 8\]
\[\left( 2a_{1} + 15d \right) \cdot 8 = 172\]
\[2a_{1} + 15d = 21,5\]
\[- 2 \cdot 8,5 + 21,5 = 15d\]
\[15d = 4,5\]
\[d = 0,3\]
\[Ответ:d = 0,3.\]