\[\boxed{\mathbf{621\ (621).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 10\sqrt{\frac{2}{5}} - 0,5\sqrt{160} + 3\sqrt{1\frac{1}{9}} =\]
\[= \sqrt{\frac{100 \cdot 2}{5}} - \sqrt{\frac{160}{4}} + \sqrt{\frac{9 \cdot 10}{9}} =\]
\[= \sqrt{40} - \sqrt{40} + \sqrt{10} = \sqrt{10}\]
\[2)\ 9\sqrt{2\frac{1}{3}} - 8\sqrt{1\frac{5}{16}} + \sqrt{189} =\]
\[= \sqrt{\frac{81 \cdot 7}{3}} - \sqrt{\frac{64 \cdot 21}{16}} +\]
\[+ \sqrt{21 \cdot 9} =\]
\[= 3\sqrt{21} - 2\sqrt{21} + 3\sqrt{21} = 4\sqrt{21}\]
\[\boxed{\mathbf{621.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{1} = 4;\ \ d = 8;\ \ тогда:\]
\[a_{n} = 104 + 8 \cdot (n - 1) =\]
\[= 104 + 8n - 8 = 8n + 96\]
\[8n + 96 < 1000\]
\[8n < 904\]
\[n < 113,\ \ тогда\ \ \ n = 112\]
\[S_{112} = \frac{2a_{1} + 111d}{2} \cdot 112 =\]
\[= (2 \cdot 104 + 111 \cdot 8) \cdot 56 =\]
\[= 1096 \cdot 56 = 61\ 376.\]
\[Ответ:61\ 376.\]