\[\boxed{\mathbf{528\ (528).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1156 = 1600 \cdot \left( 1 - \frac{p}{100} \right)^{2}\]
\[\left( 1 - \frac{p}{100} \right)^{2} = \frac{1156}{1600}\]
\[1 - \frac{p}{100} = \sqrt{0,7225}\]
\[1 - \frac{p}{100} = 0,85\]
\[\frac{p}{100} = 0,15\]
\[p = 15\]
\[на\ 15\% - происходило\ \]
\[ежемесячное\ снижение\ цены.\]
\[Ответ:на\ 15\%.\]
\[\boxed{\mathbf{528.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ b_{n} = \frac{10}{n}\]
\[b_{2} = \frac{10}{2} = 5,\ \ b_{7} = \frac{10}{7},\]
\[\text{\ \ }b_{100} = \frac{10}{100} = 0,1\]
\[2)\text{\ b}_{n} = 5 - 2n\]
\[b_{2} = 5 - 4 = 1,\ \ \]
\[b_{7} = 5 - 14 = - 9,\ \ \]
\[b_{100} = 5 - 200 = - 195\]
\[\ 3)\ b_{n} = n² + 2n\]
\[b_{2} = 4 + 4 = 8,\ \ \]
\[b_{7} = 49 + 14 = 63,\ \ \]
\[b_{100} = 10\ 000 + 200 = 10\ 200\]
\[4)\ b_{n} = ( - 1)^{n + 1}\]
\[b_{2} = ( - 1)^{3} = - 1,\ \ \]
\[b_{7} = ( - 1)^{8} = 1,\]
\[\text{\ \ }b_{100} = ( - 1)^{101} = - 1\]