\[\boxed{\text{436\ (436).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1) - x^{2} + 6x - a > 0 \Longrightarrow\]
\[\Longrightarrow ветви\ направлены\ вниз\]
\[D = 36 - 4a\]
\[36 - 4a \leq 0\]
\[a \geq 9\]
\[Ответ:при\ a \geq 9.\]
\[2)\ x^{2} - (a + 1)x + 3a -\]
\[- 5 < 0 \Longrightarrow ветви\ направлены\ \]
\[вверх\]
\[D = (a + 1)^{2} - 4(3a - 5) =\]
\[= a^{2} + 2a + 1 - 12a + 20 =\]
\[= a^{2} - 10a + 21\]
\[a^{2} - 10a + 21 \leq 0\]
\[a_{1} + a_{2} = 10,\ \ a_{1} = 7\]
\[a_{1}a_{2} = 21,\ \ a_{2} = 3\]
\[Ответ:\lbrack 3;7\rbrack.\]
\[3)\ ax^{2} + (a - 1)x +\]
\[+ (a - 1) < 0 \Longrightarrow при\ a > 0\ \]
\[ветви\ направлены\ вверх\]
\[D = (a - 1)^{2} - 4a(a - 1) =\]
\[= a^{2} - 2a + 1 - 4a^{2} + 4a =\]
\[= - 3a^{2} + 2a + 1\]
\[- 3a^{2} + 2a + 1 \leq 0\]
\[D = 4 + 12 = 16\]
\[a_{1} = \frac{- 2 + 4}{- 6} = - \frac{1}{3}\ \]
\[a_{2} = \frac{- 2 - 4}{- 6} = 1\]
\[Ответ:при\ a \geq 1\text{.\ }\]