\[\boxed{\text{423\ (423).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Уравнение\ имеет\ два\ \]
\[различных\ корня,\ \]
\[если\ D > 0.\]
\[1)\ x^{2} - 8bx + 15b + 1 = 0\]
\[D = 64b^{2} - 60b - 4\]
\[64b^{2} - 60b - 4 > 0\ \ |\ :4\]
\[16b^{2} - 15b - 1 > 0\]
\[D = 225 + 64 = 289\]
\[b_{1,2} = \frac{15 \pm 17}{32}\]
\[b = - \frac{1}{16};\ \ \ \ b = 1.\]
\[Ответ:b \in \left( - \infty; - \frac{1}{16} \right) \cup (1;\ + \infty).\]
\[2)\ 2x^{2} + 2 \cdot (b - 6)x + b - 2 = 0\]
\[D = 4(b - 6)^{2} - 8(b - 2) =\]
\[= 4b^{2} - 48b + 144 - 8b +\]
\[+ 16 = 4b^{2} - 56b + 160\]
\[4b^{2} - 56b + 160 > 0\ \ |\ :4\]
\[b^{2} - 14b + 40 > 0\]
\[b_{1} + b_{2} = 14,\ \ x_{1} = 10\]
\[b_{1}b_{2} = 40,\ \ x_{2} = 4\]
\[Ответ:b \in ( - \infty;4) \cup (10;\ + \infty).\]
\[\boxed{\text{423.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ y = 4x^{2} + 3x + 6 -\]
\[квадратичная\]
\[2)\ y = 4x + 3 - не\ \]
\[квадратичная\]
\[3)\ y = \frac{1}{2x^{2} - 3x + 2} - не\ \]
\[квадратичная\]
\[4)\ y = 6x^{2} - 5x -\]
\[квадратичная\]