\[\boxed{\text{411\ (411).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
\[Решение\ квадратных\ \]
\[неравенств.\]
Решение.
\[1)\ x^{2} - 2x - 11 < \frac{1}{4}\ \ \ \ \ \ \ \ | \cdot 4\]
\[4x^{2} - 8x - 44 - 1 < 0\]
\[4x^{2} - 8x - 45 < 0\]
\[D = 64 + 720 = 784\]
\[x_{1,2} = \frac{8 \pm 28}{8}\]
\[x_{1} = - 2,5;\ \ \ x_{2} = 4,5\]
\[Ответ:\ x \in \ ( - 2,5;4,5).\]
\[2) - 3x^{2} + 8x + 6 \geq - \frac{2}{3}\text{\ \ \ }| \cdot 3\]
\[- 9x^{2} + 24x + 18 + 2 \geq 0\]
\[- 9x^{2} + 24x + 20 \geq 0\]
\[9x^{2} - 24x - 20 \leq 0\]
\[D = 576 + 720 = 1296\]
\[x_{1,2} = \frac{- 24 \pm 36}{- 18}\]
\[x_{1} = - \frac{2}{3};\ \ \ x_{2} = \frac{10}{3} = 3\frac{1}{3}\]
\[Ответ:x \in \left\lbrack - \frac{2}{3};\ 3\frac{1}{3} \right\rbrack\text{.\ }\]