Решебник по алгебре 9 класс Мерзляк Задание 407

Авторы:
Год:2023
Тип:учебник
Серия:Алгоритм успеха

Задание 407

\[\boxed{\text{407\ (407).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

\[Решение\ квадратных\ \]

\[неравенств.\]

Решение.

\[1)\text{\ x}^{2} > 1\]

\[x^{2} - 1 > 0\]

\[(x - 1)(x + 1) > 0\]

\[x = - 1;\ \ x = 1.\]

\[Ответ:x \in ( - \infty;\ - 1) \cup (1;\ + \infty).\]

\[2)\ x^{2} < 3\]

\[x^{2} - 3 < 0\]

\[\left( x + \sqrt{3} \right)\left( x - \sqrt{3} \right) < 0\]

\[x = - \sqrt{3};\ \ x = \sqrt{3}.\]

\[Ответ:x \in \left( - \sqrt{3}; + \sqrt{3} \right).\]

\[3) - 3x^{2} \geq - 12x\]

\[- 3x^{2} + 12x \geq 0\]

\[- 3x(x - 4) \geq 0\]

\[3x(x - 4) \leq 0\]

\[x = 0;\ \ x = 4.\]

\[Ответ:x \in \lbrack 0;4\rbrack.\]

\[4) - 2x^{2} < - 128\]

\[x^{2} > 64\]

\[x^{2} - 64 > 0\]

\[(x - 8)(x + 8) > 0\]

\[x = - 8;\ \ x = 8.\]

\[Ответ:x \in ( - \infty; - 8) \cup (8;\ + \infty).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам