\[\boxed{\text{406\ (406).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
\[Решение\ квадратных\ \]
\[неравенств.\]
Решение.
\[1)\ x^{2} \leq 49\]
\[x^{2} - 49 \leq 0\]
\[(x - 7)(x + 7) \leq 0\]
\[x = 7;\ \ x = - 7.\]
\[Ответ:x \in \lbrack - 7;7\rbrack.\]
\[2)\ x^{2} > 5\]
\[x^{2} - 5 > 0\]
\[\left( x - \sqrt{5} \right)\left( x + \sqrt{5} \right) > 0\ \]
\[x = - \sqrt{5};\ \ x = \sqrt{5}.\]
\[Ответ:x \in \left( - \infty; - \sqrt{5} \right) \cup \left( + \sqrt{5}; + \infty \right).\]
\[3)\ 7x^{2} \leq 4x\]
\[7x^{2} - 4x \leq 0\]
\[7x\left( x - \frac{4}{7} \right) \leq 0\]
\[x = 0;\ \ x = \frac{4}{7}.\]
\[Ответ:x \in \left\lbrack 0;\frac{4}{7} \right\rbrack.\]
\[4)\ 0,9x^{2} < - 27x\]
\[0,9x^{2} + 27x < 0\]
\[0,9x(x + 30) < 0\]
\[x = 0;\ \ x = - 30.\]
\[Ответ:x \in ( - 30;0).\]