Решебник по алгебре 9 класс Мерзляк Задание 386

Авторы:
Год:2023
Тип:учебник
Серия:Алгоритм успеха

Задание 386

\[\boxed{\text{386\ (386).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[1)\ y = x \cdot |x|\]

\[y = x^{2},\ при\ \ x > 0\]

\[y = - x^{2},\ при\ \ x < 0\]

\[2)\ y = \frac{x}{|x|} \cdot (x^{2} - x - 6)\]

\[1.\ y = x^{2} - x - 6,\ при\ \ x > 0\]

\[2.\ y = - x^{2} + x + 6,\ при\ \ x < 0\]

\[1.\ y = x^{2} - x - 6\]

\[x_{0} = \frac{1}{2};\ \ y_{0} = \frac{1}{4} - \frac{1}{2} - 6 = - 6\frac{1}{4},\ \ \]

\[\left( \frac{1}{2};\ - 6\frac{1}{4} \right) - вершина\ параболы.\]

\[x^{2} - x - 6 = 0\]

\[x_{1} + x_{2} = 1,\ \ x_{1} = 3\]

\[x_{1}x_{2} = - 6,\ \ \]

\[x_{2} = - 2\ (не\ удовлетворяет),\ \ \]

\[(3;0)\]

\[x = 0,\ \ y = - 6,\ \ (0; - 6)\]

\[2\text{.\ }y = - x^{2} + x + 6\]

\[x_{0} = \frac{1}{2},\ \ \]

\[y_{0} = - \frac{1}{4} + \frac{1}{2} + 6 =\]

\[= 6\frac{1}{4},\ \ \ \left( \frac{1}{2};6\frac{1}{4} \right)\]

\[- x^{2} + x + 6 = 0\]

\[x_{1} + x_{2} = 1,\ \ x_{1} = - 2\]

\[x_{1}x_{2} = - 6,\ \ \]

\[x_{2} = 3\ (не\ удовлетворяет),\ \ \]

\[( - 2;0)\]

\[x = 0,\ \ y = 6,\ \ (0;6)\]

\[3)\ y = x^{2} - 4|x| + 3\]

\[x_{0} = 2,\ \ \]

\[y_{0} = 4 - 8 + 3 = - 1,\]

\[\ \ x > 0\]

\[x_{0} = - 2,\ \ y_{0} = - 1,\ \]

\[\ x < 0\]

\[x = 0,\ \ y = 3\]

\[x^{2} - 4x + 3 = 0\]

\[x_{1} + x_{2} = 4,\ \ x_{1} = 1\]

\[x_{1}x_{2} = 3,\ \ x_{2} = 3\ \]

\[x^{2} + 4x + 3 = 0\]

\[x_{1} + x_{2} = - 4,\ \ x_{1} = - 1\]

\[x_{1}x_{2} = 3,\ \ x_{2} = - 3\ \]

\[4)\ y = x^{2} + 3x \cdot \frac{|x - 3|}{x - 3} - 4\]

\[1.y = x^{2} + 3x - 4,\ \ x > 0\]

\[2.\ y{= x}^{2} - 3x - 4,\ \ x < 0\]

\[1.\ y = x^{2} + 3x - 4\]

\[x_{0} = - 1,5,\ \ \]

\[y_{0} = \frac{9}{4} - \frac{9}{2} - 4 = - 6\frac{1}{4},\ \ \]

\[\left( - 1,5;\ - 6\frac{1}{4} \right)\]

\[x = 0,\ \ y = - 4,\ \ \]

\[(0;\ - 4)\]

\[x^{2} + 3x - 4 = 0\]

\[x_{1} + x_{2} = - 3,\ \ \]

\[x_{1} = - 4\ (не\ удовлетворяет)\]

\[x_{1}x_{2} = - 4,\ \ x_{2} = 1,\ \ \]

\[(1;0)\ \]

\[2.\ y = x^{2} - 3x - 4\]

\[x_{0} = 1,5,\ \ \]

\[y_{0} = \frac{9}{4} - \frac{9}{2} - 4 = - 6\frac{1}{4}\]

\[x = 0,\ \ y = - 4,\ \ (0;\ - 4)\]

\[x^{2} - 3x - 4 = 0\]

\[x_{1} + x_{2} = 3,\ \ \]

\[x_{1} = 4\ \ (не\ удовлетворяет),\]

\[\ \ ( - 1;0)\]

\[x_{1}x_{2} = - 4,\ \ x_{2} = - 1\ \]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам