\[\boxed{\text{385\ (385).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = \frac{(x + 3)^{3}}{(x + 3)};\ \ x \neq - 3\]
\[y = (x + 3)^{2}\]
\[a = 1 > 0 - ветви\ вверх;\]
\[( - 3;0) - вершина\ параболы\ \]
\[(выколотая\ точка).\]
\[2)\ y = \frac{x^{3} - 6x^{2} + 8x}{x};\ \ \ x \neq 0\]
\[y = x^{2} - 6x + 8\]
\[a = 1 > 0 - ветви\ вверх.\]
\[x_{0} = \frac{6}{2} = 3;\]
\[y_{0} = 9 - 18 + 8 = - 1.\ \ \]
\[(3;\ - 1) - вершина\ параболы.\]
\[y = 0:\ \ \]
\[x^{2} - 6x + 8 = 0\]
\[x_{1} + x_{2} = 6,\ \ x_{1} = 2\]
\[x_{1}x_{2} = 8,\ \ x_{2} = 4\]
\[(2;0),\ \ (4;0).\]
\[3)\ y = \frac{x^{4} - 1}{1 - x^{2}}\]
\[y = \frac{(x^{2} - 1)(x^{2} + 1)}{(1 - x^{2})};\ \ x \neq \pm 1\]
\[y = - \left( x^{2} + 1 \right)\]
\[a = - 1 < 0 - ветви\ вверх;\]
\[(0; - 1) - вершина\ параболы.\]