\[\boxed{\text{335\ (335).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = \frac{4x + 14}{x + 1}\]
\[y = \frac{4(x + 1) + 10}{x + 1};\ \ x \neq - 1\]
\[y = \frac{10}{x + 1} + 4\]
\[1)\ y = \frac{10}{x}\]
\[x\] | \[2\] | \[5\] | \[1\] | \[10\] | \[- 2\] | \[- 5\] | \[- 1\] | \[- 10\] |
---|---|---|---|---|---|---|---|---|
\[y\] | \[5\] | \[2\] | \[10\] | \[1\] | \[- 5\] | \[- 2\] | \[- 10\] | \[- 1\] |
\[2)\ y = \frac{10}{x + 1}\]
\[2)\ y = \frac{7 - x}{x - 2}\]
\[y = \frac{- (x - 2 - 5)}{x - 2}\]
\[y = \frac{5}{x - 2} - 1;\ \ x \neq 2\]
\[1)\ y = \frac{5}{x}\]
\[x\] | \[1\] | \[5\] | \[- 1\] | \[- 5\] | \[2\] | \[- 2\] |
---|---|---|---|---|---|---|
\[y\] | \[5\] | \[1\] | \[- 5\] | \[- 1\] | \[2,5\] | \[- 2,5\] |
\[2)\ y = \frac{5}{x - 2}\]
\[\boxed{\text{335.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[f(x) = \left\{ \begin{matrix} 3x - 1,\ \ \ \ \ если\ x \leq - 1 \\ x^{2} - 5,\ \ \ \ \ - 1 < x < 4 \\ 11,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \geq 4\ \\ \end{matrix} \right.\ \]
\[1)\ f( - 3) = 3 \cdot ( - 3) - 1 = - 10\]
\[2)\ f( - 1) = 3 \cdot ( - 1) - 1 = - 4\]
\[3)\ f(2) = 2^{2} - 5 = - 1\]
\[4)\ f(6,4) = 11\ \]