\[\boxed{\text{334\ (334).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = \frac{3x + 8}{x}\]
\[y = \frac{3x}{x} + \frac{8}{x}\]
\[y = \frac{8}{x} + 3;\ \ x \neq 0\]
\[1)\ y = \frac{8}{x}\]
\[x\] | \[1\] | \[2\] | \[4\] | \[8\] | \[- 1\] | \[- 2\] | \[- 4\] | \[- 8\] |
---|---|---|---|---|---|---|---|---|
\[y\] | \[8\] | \[4\] | \[2\] | \[1\] | \[- 8\] | \[- 4\] | \[- 2\] | \[- 1\] |
\[2)\ y = \frac{2x + 14}{x + 3}\]
\[y = \frac{2(x + 3) + 8}{x + 3}\]
\[y = \frac{8}{x + 3} + 2;\ \ x \neq - 3\]
\[1)\ y = \frac{8}{x}\]
\[x\] | \[1\] | \[2\] | \[4\] | \[8\] | \[- 1\] | \[- 2\] | \[- 4\] | \[- 8\] |
---|---|---|---|---|---|---|---|---|
\[y\] | \[8\] | \[4\] | \[2\] | \[1\] | \[- 8\] | \[- 4\] | \[- 2\] | \[- 1\] |
\[2)\ y = \frac{8}{x + 3}\]
\[3)\ y = \frac{- 2x}{x - 1}\]
\[y = \frac{- 2x + 2 - 2}{x - 1}\]
\[y = \frac{- 2(x - 1) - 2}{x - 1}\]
\[y = \frac{- 2}{x - 1} - 2\]
\[1)\ y = - \frac{2}{x}\]
\[x\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] | \[0,5\] | \[- 0,5\] |
---|---|---|---|---|---|---|
\[y\] | \[- 2\] | \[- 1\] | \[2\] | \[1\] | \[- 4\] | \[4\] |
\[2)\ y = - \frac{2}{x - 1}\]
\[\boxed{\text{334.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ h(x) = 9 - 10x\]
\[Пересекает\ ось\ \ y:\text{\ \ }\]
\[h(0) = 9.\]
\[Пересекает\ ось\ x:\]
\[9 - 10x = 0\]
\[10x = 9\]
\[x = 0,9\]
\[Ответ:(0;9);\ (0,9;0).\]
\[2)\ p(x) = 4x^{2} + x - 3\]
\[Пересекает\ ось\ y:\ \ \]
\[p(0) = - 3.\]
\[Пересекает\ ось\ x:\]
\[4x^{2} + x - 3 = 0\]
\[D = 1 + 48 = 49\]
\[x = \frac{- 1 + 7}{8} = \frac{3}{4}\]
\[x = \frac{- 1 - 7}{8} = - 1\]
\[Ответ:( - 1;0);\ \left( \frac{3}{4};0 \right);\ (0;\ - 3).\]
\[3)\ s(x) = \frac{x^{2} - 2}{x^{2} + 2}\]
\[Пересекает\ ось\ x:\ \]
\[\frac{x^{2} - 2}{x^{2} + 2} = 0\]
\[x^{2} = 2\]
\[x = \pm \sqrt{2}.\]
\[Пересекает\ ось\ y:\text{\ \ }\]
\[s(0) = \frac{- 2}{2} = - 1.\]
\[Ответ:(0;\ - 1);\ \]
\[\left( \sqrt{2};0 \right);\ \left( - \sqrt{2};0 \right)\text{.\ }\]