\[\boxed{\text{282\ (282).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \left( \sqrt{11} + \sqrt{6} \right)\left( \sqrt{11} - \sqrt{6} \right) =\]
\[= 11 - 6 = 5\]
\[2)\ \left( \sqrt{32} - 5 \right)\left( \sqrt{32} + 5 \right) =\]
\[= 32 - 25 = 7\]
\[3)\ \left( \sqrt{5} + \sqrt{3} \right)^{2} = 5 + 2\sqrt{15} + 3 =\]
\[= 8 + 2\sqrt{15}\]
\[4)\ \left( \sqrt{10} + 8 \right)^{2} =\]
\[= 10 + 16\sqrt{10} + 64 =\]
\[= 74 + 16\sqrt{10}\ \]
\[\boxed{\text{282.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ |x + 3| + 2x \geq 6\]
\[|x + 3| \geq 6 - 2x\]
\[x + 3 \leq 2x - 6\ \ \ или\ \ \ \]
\[x + 3 \geq 6 - 2x\]
\[\ \ \ \ \ \ - x \leq - 9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3x \geq 3\]
\[\ \ \ \ \ \ \ \ \ \ x \geq 9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \geq 1\]
\[Ответ:x \in \lbrack 1;\ + \infty).\]
\[2)\ |x - 4| - 6x < 15\]
\[|x - 4| < 15 + 6x\]
\[Ответ:x \in \left( - 1\frac{4}{7};\ + \infty \right)\text{.\ }\]