\[\boxed{\text{263\ (263).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ y = - 4x + 8\]
\[нули\ функции:\]
\[- 4x + 8 = 0\]
\[- 4x = - 8\]
\[x = 2\]
\(,\)
\[\ убывает\ на\ ( - \infty; + \infty).\]
\[Ответ:f(x) > 0\ на\ ( - \infty;2);\]
\[f(x) < 0\ на\ (2;\ + \infty).\]
\[2)\ y = - x^{2} - 1\]
\[нули\ функции:\]
\[- x^{2} - 1 = 0\]
\[- x^{2} \neq 1\]
\[нулей\ функции\ нет;\]
\[\ f(x) < 0\ на\ ( - \infty;\ + \infty).\]
\[x_{1} = 0:\ \]
\[y_{1} = - 1.\]
\[x_{2} = - 1:\ \]
\[y_{2} = - 2.\]
\[x_{1} > x_{2};\ \ y_{1} > y_{2} \rightarrow \ \]
\[\rightarrow \ возрастает\ на\ ( - \infty;0\rbrack.\]
\[x_{1} = 0;\ \ y_{1} = - 1\]
\[x_{2} = 1;\ \ y_{2} = - 2\]
\[x_{1} < x_{2};\ \ y_{1} > y_{2} \rightarrow \ \]
\[\rightarrow \ убывает\ на\ \lbrack 0;\ + \infty).\]
\[Ответ:f(x) < 0\ на\ ( - \infty;\ + \infty).\]
\[3)\ y = \sqrt{x} + 2\]
\[\sqrt{x} + 2 = 0\]
\[\sqrt{x} \neq - 2 - нулей\ функции\ нет.\]
\[f(x) > 0\ на\ ( - \infty; + \infty).\]
\[x_{1} = 0:\ \ \]
\[y_{1} = 2.\]
\[{x_{2} = 1:\ \ }{y_{2} = 3.}\]
\[x_{2} > x_{1};\ \ y_{2} > y_{1} \rightarrow \ \ \]
\[\rightarrow возрастает\ на\ \lbrack 0;\ + \infty).\]
\[Ответ:f(x) > 0\ на\ ( - \infty; + \infty)\text{.\ }\]
\[\boxed{\mathbf{263.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 5x^{2} - 4x + b = 0;\ \ D > 0\]
\[D = 16 - 20b\]
\[16 - 20b > 0\]
\[- 20b > - 16\]
\[b < \frac{16}{20} < \frac{4}{5}\]
\[b < 0,8.\]
\[2)\ x^{2} + x - 3b = 0;\ \ \ D < 0\]
\[D = 1 + 12b\]
\[1 + 12b < 0\]
\[12b < - 1\]
\[b < - \frac{1}{12}.\]