\[\boxed{\text{260\ (260).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ f(x) = 0,2x + 3\]
\[0,2x + 3 = 0\]
\[0,2x = - 3\]
\[x = - 15.\]
\[Ответ:x = - 15.\]
\[2)\ g(x) = 35 - 2x - x^{2}\]
\[x^{2} + 2x - 35 = 0\]
\[x_{1} + x_{2} = - 2,\ \ x_{1} = - 7\]
\[x_{1}x_{2} = - 35,\ \ x_{2} = 5.\]
\[Ответ:x = - 7;\ \ x = 5.\]
\[3)\ \varphi(x) = \sqrt{x + 3}\]
\[\sqrt{x + 3} = 0\]
\[x + 3 = 0\]
\[x = - 3.\]
\[Ответ:x = - 3.\]
\[4)\ h(x) = \frac{x^{2} - x - 6}{x + 3};\ \ x \neq - 3\]
\[x^{2} - x - 6 = 0\]
\[x_{1} + x_{2} = 1,\ \ x_{1} = 3\]
\[x_{1}x_{2} = - 6,\ \ x_{2} = - 2\]
\[Ответ:x = - 2;\ \ x = 3.\]
\[5)\ f(x) = x^{3} - 4x\]
\[x^{3} - 4x = 0\]
\[x \cdot \left( x^{2} - 4 \right) = 0\]
\[x = 0;\]
\[x = \pm 2.\]
\[Ответ:x = \pm 2;x = 0.\]
\[6)\ f(x) = x^{2} + 1\]
\[x^{2} + 1 = 0\]
\[x^{2} = - 1\]
\[нулей\ функции\ нет.\ \]
\[Ответ:нет\ нулей\ функции.\]
\[\boxed{\mathbf{260.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ (4x - 3)^{2} + (3x + 2)^{2} \geq (5x + 1)^{2}\]
\[16x^{2} - 24x + 9 + 9x^{2} + 12x + 4 \geq 25x^{2} + 10x + 1\]
\[- 12x - 10x \geq 1 - 13\]
\[- 22x \geq - 12\]
\[x \leq \frac{12}{22}\]
\[x \leq \frac{6}{11}.\]
\[2)\ (6x - 1)^{2} - 4x(9x - 3) \leq 1\]
\[36x^{2} - 12x + 1 - 36x^{2} + 12x \leq 1\]
\[0x \leq 0\]
\[x - любое\ число.\]
\[3)\ \frac{2x - 1}{4} \geq \frac{3x - 5}{5}\text{\ \ \ \ }\]
\[5(2x - 1) \geq 4(3x - 5)\]
\[10x - 5 \geq 12x - 20\]
\[- 2x \geq - 15\]
\[x \leq 7,5.\]
\[4)\ \frac{x - 3}{9} - \frac{x + 4}{4} > \frac{x - 8}{6}\ \ \ | \cdot 36\]
\[4(x - 3) - 9(x + 4) > 6(x - 8)\]
\[4x - 12 - 9x - 36 > 6x - 48\]
\[- 3x - 6x > - 48 + 48\]
\[- 9x > 0\]
\[x < 0.\]