\[\boxed{\text{234\ (234).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ f(x) = \frac{x + 3}{x - 4}\]
\[x - 4 \neq 0\]
\[x \neq 4\]
\[D(f) = ( - \infty;4) \cup (4;\ + \infty).\]
\[2)\ f(x) = \frac{9}{x^{2} + 16}\]
\[D(f) = ( - \infty; + \infty).\]
\[3)\ f(x) = \frac{5x + 1}{x^{2} - 6x + 8}\]
\[x^{2} - 6x + 8 \neq 0\]
\[x_{1} + x_{2} = 6,\ \ x_{1} = 2\]
\[x_{1}x_{2} = 8,\ \ x_{2} = 4\]
\[D(f) =\]
\[= ( - \infty;2) \cup (2;4) \cup (4;\ + \infty).\]
\[4)\ f(x) = \sqrt{x - 1} + \sqrt{x - 3}\]
\[x - 1 \geq 0\ \ \ и\ \ \ x - 3 \geq 0\]
\[\ \ \ \ \ \ \ \ x \geq 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \geq 3\]
\[D(f) = \lbrack 3; + \infty).\]
\[5)\ f(x) = \sqrt{x - 5} + \sqrt{5 - x}\]
\[x - 5 \geq 0\ \ \ и\ \ \ 5 - x \geq 0\]
\[\ \ \ \ \ \ \ \ x \geq 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \leq 5\]
\[D(f) = \left\{ 5 \right\}\]
\[6)\ f(x) = \sqrt{x^{2} + 1}\]
\[D(f) = ( - \infty; + \infty)\text{.\ }\]
\[\boxed{\text{234.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ x\frac{км}{ч} - скорость\ \]
\[по\ течению\ реки,\ \]
\[y - скорость\ против\ течения.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} \frac{48}{y} + \frac{30}{x} = 3\ \ \ \ \ |\ :3 \\ \frac{15}{x} = \frac{36}{y} - 1\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \frac{16}{y} + \frac{10}{x} = 1 \\ \frac{36}{y} - \frac{15}{x} = 1 \\ \end{matrix}( - ) \right.\ \]
\[\left\{ \begin{matrix} \frac{20}{y} = \frac{25}{x}\text{\ \ \ \ \ \ \ \ } \\ \frac{16}{y} + \frac{10}{x} = 1 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} y = \frac{4}{5}\text{x\ \ \ \ \ \ \ \ \ \ \ } \\ \frac{16}{\frac{4}{5}x} + \frac{10}{x} = 1 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \frac{30}{x} = 1\ \ \\ y = \frac{4}{5}x \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 30 \\ y = 24 \\ \end{matrix} \right.\ \]
\[30\frac{км}{ч} - скорость\ по\ \]
\[течению.\]
\[24\frac{км}{ч} - скорость\ против\ \]
\[течения.\]
\[(24 + 30)\ :2 = 27\ \left( \frac{км}{ч} \right) -\]
\[собственная\ скорость\ катера.\]
\[(30 - 24)\ :2 = 3\ \left( \frac{км}{ч} \right) -\]
\[скорость\ течения.\]
\[Ответ:27\ \frac{км}{ч};3\ \frac{км}{ч}\text{.\ }\]