\[\boxed{\text{233\ (233).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ f(x) = 7x - 15\]
\[D(f) = ( - \infty; + \infty)\]
\[2)\ f(x) = \frac{8}{x + 5}\]
\[x + 5 \neq 0,\ \ x \neq - 5\]
\[D(f) = ( - \infty; - 5)\ \cup ( - 5;\ + \infty)\]
\[3)\ f(x) = \frac{x - 10}{6}\]
\[D(f) = ( - \infty; + \infty)\]
\[4)\ f(x) = \sqrt{x - 9}\]
\[x - 9 \geq 0\]
\[x \geq 9\]
\[D(f) = \lbrack 9;\ + \infty)\]
\[5)\ f(x) = \frac{1}{\sqrt{1 - x}}\]
\[1 - x > 0\]
\[x < 1\]
\[D(f) = ( - \infty;1)\ \]
\[6)\ f(x) = \frac{10}{x^{2} - 4}\]
\[x \neq 2,\ x \neq - 2\]
\[D(f) =\]
\[= ( - \infty;\ - 2) \cup ( - 2;2) \cup (2;\ + \infty)\]
\[7)\ f(x) = \frac{6x + 11}{x^{2} - 2x}\]
\[x^{2} - 2x \neq 0\]
\[x \cdot (x - 2) \neq 0\]
\[x \neq 0\]
\[x \neq 2\]
\[D(f) =\]
\[= ( - \infty;0) \cup (0;2) \cup (2;\ + \infty)\]
\[8)\ f(x) = \sqrt{x + 6} + \sqrt{4 - x}\]
\[x + 6 \geq 0\ \ \ и\ \ \ 4 - x \geq 0\]
\[\ \ \ \ \ \ \ x \geq - 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ x \leq 4\]
\[D(f) = \lbrack - 6;4\rbrack\text{.\ }\]
\[\boxed{\text{233.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ x\frac{км}{ч} - скорость\ \]
\[теплохода\ по\ течению\ реки,\ \]
\[x = x_{собств.} + x_{теч.}\]
\[тогда\ y\ \frac{км}{ч} - скорость\ \]
\[против\ течения\ реки,\ \]
\[y = x_{собств.} - x_{теч.}.\]
\[Составим\ систему:\]
\[\left\{ \begin{matrix} \frac{100}{x} + \frac{64}{y} = 9 \\ \frac{80}{x} + \frac{80}{y} = 9 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} \frac{20}{x} - \frac{16}{y} = 0 \\ \frac{80}{x} + \frac{80}{y} = 9 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\left\{ \begin{matrix} \frac{20}{x} = \frac{16}{y}\text{\ \ \ \ \ \ \ } \\ \frac{80}{x} = 9 - \frac{80}{y} \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\left\{ \begin{matrix} x = \frac{20}{16}\text{y\ \ \ \ \ \ } \\ \frac{80}{x} = 9 - \frac{80}{y} \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\text{\ \ \ }\left\{ \begin{matrix} x = \frac{5}{4}\text{y\ \ \ \ \ \ \ \ \ } \\ \frac{80}{\frac{5}{4}y} = 9 - \frac{80}{y} \\ \end{matrix} \right.\ \]
\[\frac{64}{y} + \frac{80}{y} = 9\]
\[\frac{144}{y} =\]
\[y = 16\ \left( \frac{км}{ч} \right) - скорость\ \]
\[против\ течения\ реки.\]
\[16 \cdot \frac{5}{4} = 20\ \left( \frac{км}{ч} \right) - скорость\ \]
\[по\ течению\ реки.\]
\[(16 + 20)\ :2 = 18\ \left( \frac{км}{ч} \right) -\]
\[собственная\ скорость\ \]
\[теплохода.\]
\[Ответ:18\ \frac{км}{ч}.\]