\[\boxed{\text{23\ (23).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\frac{a^{2}}{a^{4} + 1} \leq \frac{1}{2}\]
\[\frac{{a^{2}}^{\backslash 2}}{a^{4} + 1} - \frac{1^{\backslash a^{4} + 1}}{2} \leq 0\]
\[\frac{2a^{2} - a^{4} - 1}{2\left( a^{4} + 1 \right)} \leq 0\]
\[- \frac{\left( a^{2} - 1 \right)^{2}}{2\left( a^{4} + 1 \right)} \leq 0\ \]
\[\frac{\left( a^{2} - 1 \right)^{2}}{2\left( a^{4} + 1 \right)} \geq 0\ \ при\ всех\ a.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ \frac{(5a + 1)^{2}}{5} \geq 4a\ \ \ \ \ \ \ \ \ | \cdot 5\]
\[(5a + 1)^{2} \geq 20a\]
\[25a^{2} + 10a + 1 - 20a \geq 0\]
\[25a^{2} - 10a + 1 \geq 0\]
\[(5a - 1)^{2} \geq 0\text{\ \ \ \ }при\ всех\ a.\]
\[Что\ и\ требовалось\ доказать.\]