\[\boxed{\text{187\ (187).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\left\{ \begin{matrix} - 2x \geq - 15 \\ 3x > - 10 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} x \leq 7,5\ \ \ \\ x > - 3\frac{1}{3} \\ \end{matrix} \right.\ \]
\[x \in \left( - 3\frac{1}{3};7,5 \right\rbrack\]
\[Целые\ решения:\ - 3;\ - 2;\ - 1;\]
\[0;1;2;3;4;5;6;7.\]
\[Ответ:11.\]
\[\boxed{\text{187.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\left\{ \begin{matrix} x^{2} + 10xy + 25y^{2} = 49 \\ x - 5y = - 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\text{\ \ }\left\{ \begin{matrix} (x + 5y)^{2} = 49 \\ x = 5y - 3\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} x + 5y = 7 \\ x = 5y - 3 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }или\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]
\[\text{\ \ }\left\{ \begin{matrix} x + 5y = - 7 \\ x = 5y - 3\ \ \ \\ \end{matrix} \right.\ \]
\[Ответ:(2;1);( - 5;\ - 0,4).\]
\[2)\ \left\{ \begin{matrix} x^{2} + 4xy + 4y^{2} = 4x + 2y \\ x + 2y = 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\ \left\{ \begin{matrix} (x + 2y)^{2} = 4x + 2y \\ x = 4 - 2y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 4x + 2y = 16 \\ x = 4 - 2y\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} 4(4 - 2y) + 2y - 16 = 0 \\ x = 4 - 2y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[16 - 8y + 2y - 16 = 0\]
\[- 6y = 0\]
\[\left\{ \begin{matrix} y = 0 \\ x = 4 \\ \end{matrix} \right.\ \]
\[Ответ:(4;0).\]
\[3)\ \left\{ \begin{matrix} x^{2} + y^{2} = 10 \\ xy = 3\ \ \ \ \ | \cdot 2 \\ \end{matrix} \right.\ \ \ \ + \ \ \]
\[+ \left\{ \begin{matrix} x^{2} + y^{2} + 2xy = 16 \\ xy = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} (x + y)^{2} = 16 \\ xy = 3 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\left\{ \begin{matrix} x + y = 4 \\ xy = 3\ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ }или\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x + y = - 4 \\ xy = 3\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]