Решебник по алгебре 9 класс Мерзляк Задание 153

Авторы:
Год:2023
Тип:учебник
Серия:Алгоритм успеха

Задание 153

Выбери издание
Алгебра 9 класс Мерзляк, Полонский, Якир Вентана-Граф 2019-2020-2021
 
фгос Мерзляк ФГОС
Издание 1
Алгебра 9 класс Мерзляк, Полонский, Якир Вентана-Граф 2019-2020-2021

\[\boxed{\text{153\ (153).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[1)\ |x - 3| + x = 15\]

\[|x - 3| = 15 - x\]

\[\left\{ \begin{matrix} x - 3 = 15 - x \\ 15 - x \geq 0\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} 2x = 18 \\ x \leq 15\ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x = 9\ \ \ \\ x \leq 15 \\ \end{matrix} \right.\ \Longrightarrow \ \ x = 9\]

\[\left\{ \begin{matrix} - x + 3 = 15 - x \\ 15 - x \geq 0\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} 0 \cdot x = - 12 \\ x \leq 15\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \ \ нет\ корней.\]

\[Ответ:x = 9.\]

\[2)\ |x + 1| - 4x = 14\]

\[\left\{ \begin{matrix} x + 1 = 4x + 14 \\ 4x + 14 \geq 0\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} - 3x = 13 \\ x \geq - 3,5\ \\ \end{matrix} \right.\ \text{\ \ \ \ }\]

\[\ \left\{ \begin{matrix} x = - 4\frac{1}{3} \\ x \geq - 3,5 \\ \end{matrix} \right.\ \Longrightarrow \text{\ \ }\]

\[\Longrightarrow не\ удовлетворяет.\]

\[\left\{ \begin{matrix} - x - 1 = 4x + 14 \\ x \geq - 3,5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} - 5x = 15 \\ x \geq - 3,5\ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x = - 3\ \ \ \ \\ x \geq - 3,5 \\ \end{matrix} \right.\ \Longrightarrow \ \ x = - 3\]

\[Ответ:\ x = - 3.\ \]

\[3)\ |3x - 12| - 2x = 1\]

\[\left\{ \begin{matrix} 3x - 12 = 1 + 2x \\ 1 + 2x \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\left\{ \begin{matrix} x = 13\ \ \ \ \\ x \geq - 0,5 \\ \end{matrix} \right.\ \Longrightarrow \ \ x = 13\]

\[\left\{ \begin{matrix} - 3x + 12 = 1 + 2x \\ x \geq - 0,5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} - 5x = - 11 \\ x \geq - 0,5\ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x = \frac{11}{5}\text{\ \ \ \ } \\ x \geq - 0,5 \\ \end{matrix} \right.\ \Longrightarrow \ \ x = 2,2\]

\[Ответ:x = 13;x = 2,2.\ \]

\[4)\ |x + 2| - x = 1\]

\[\left\{ \begin{matrix} x + 2 = 1 + x \\ 1 + x \geq 0\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} 0 \cdot x = - 1 \\ x \geq - 1\ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \ \ нет\ корней\]

\[\left\{ \begin{matrix} - x - 2 = 1 + x \\ x \geq - 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\left\{ \begin{matrix} - 2x = 3 \\ x \geq - 1\ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x = - 1,5 \\ x \geq - 1\ \ \ \\ \end{matrix}\ \right.\ \Longrightarrow\]

\[\Longrightarrow не\ удовлетворяет.\]

\[Ответ:нет\ корней.\]

Издание 2
фгос Мерзляк ФГОС

\[\boxed{\mathbf{153.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\ x^{3} - 3x^{2} + 6x - 8 = 0\]

\[\left( x^{3} - 8 \right) - \left( 3x^{2} - 6x \right) = 0\]

\[(x - 2)\left( x^{2} + 2x + 4 \right) - 3x(x - 2) = 0\]

\[(x - 2)\left( x^{2} + 2x + 4 - 3x \right) = 0\]

\[(x - 2)\left( x^{2} - x + 4 \right) = 0\]

\[x^{2} - x + 4 = 0\]

\[D = 1 - 16 = - 15 < 0\]

\[нет\ корней.\]

\[x - 2 = 0\]

\[x = 2.\]

\[Ответ:\ \ x = 2.\]

\[2)\ x^{2} - 6x + 9 - x^{4} = 0\]

\[(x - 3)^{2} - \left( x^{2} \right)^{2} = 0\]

\[\left( x - 3 - x^{2} \right)\left( x - 3 + x^{2} \right) = 0\]

\[- x^{2} + x - 3 = 0\]

\[x^{2} - x + 3 = 0\]

\[D = 1 - 12 < 0\]

\[нет\ корней.\]

\[x^{2} + x - 3 = 0\]

\[D = 1 + 12 = 13\]

\[x = \frac{- 1 \pm \sqrt{13}}{2}.\]

\[Ответ:x = \frac{- 1 \pm \sqrt{13}}{2}.\]

\[3)\ x^{3} - 3x^{2} + 4 = 0\]

\[x^{3} - 3x^{2} + 1 + 3 = 0\]

\[\left( x^{3} + 1 \right) - 3\left( x^{2} - 1 \right) = 0\]

\[(x + 1)\left( x^{2} - x + 1 \right) - 3(x - 1)(x + 1) = 0\]

\[(x + 1)\left( x^{2} - x + 1 - 3x + 3 \right) = 0\]

\[(x + 1)\left( x^{2} - 4x + 4 \right) = 0\]

\[(x + 1)(x - 2)^{2} = 0\]

\[x = - 1;\ \ x = 2.\]

\[Ответ:x = - 1;\ \ x = 2.\]

\[4)\ x^{3} - 3x + 2 = 0\]

\[x^{3} - x - 2x + 2 = 0\]

\[x\left( x^{2} - 1 \right) - 2(x - 1) = 0\]

\[x(x - 1)(x + 1) - 2(x - 1) = 0\]

\[(x - 1)\left( x^{2} + x - 2 \right) = 0\]

\[x^{2} + x - 2 = 0\]

\[D = 1 + 8 = 9\]

\[x_{1} = \frac{( - 1 + 3)}{2} = 1;\]

\[x_{2} = \frac{- 1 - 3}{2} = - 2.\]

\[x - 1 = 0\]

\[x = 1.\]

\[Ответ:x = - 2;\ \ x = 1.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам