\[\boxed{\text{152\ (152).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \sqrt{9 - x} + \frac{10}{x + 3}\]
\[9 - x \geq 0\ \ \ \ \ \ и\ \ \ \ \ \ \ \ x + 3 \neq 0\]
\[x \leq 9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x \neq - 3\ \]
\[Ответ:( - \infty;9\rbrack;\ кроме - 3.\]
\[\boxed{\mathbf{152.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x^{3} - 2x^{2} + 2x - 1 = 0\]
\[x^{3} - 1 - 2x(x - 1) = 0\]
\[(x - 1)\left( x^{2} + x + 1 \right) - 2x(x - 1) = 0\]
\[(x - 1)\left( x^{2} + x + 1 - 2x \right) = 0\]
\[(x - 1)\left( x^{2} - x + 1 \right) = 0\]
\[x^{2} - x + 1 = 0\]
\[D = 1 - 4 < 0\]
\[нет\ корней.\]
\[x - 1 = 0\]
\[x = 1.\]
\[Ответ:x = 1.\]
\[2)\ x^{4} - x^{2} - 8x - 16 = 0\]
\[x^{4} - \left( x^{2} + 8x + 16 \right) = 0\]
\[\left( x^{2} \right)^{2} - (x + 4)^{2} = 0\]
\[\left( x^{2} - x - 4 \right)\left( x^{2} + x + 4 \right) = 0\]
\[x^{2} - x - 4 = 0\]
\[D = 1 + 16 = 17\]
\[x = 1 \pm \sqrt{17}.\]
\[x^{2} + x + 4 = 0\]
\[D = 1 - 16 = - 15 < 0\]
\[нет\ корней.\]
\[Ответ:x = 1 \pm \sqrt{17}.\]
\[3)\ x^{3} - 5x^{2} + 4 = 0\]
\[x^{3} - x^{2} - 4x^{2} + 4 = 0\]
\[x^{2}(x - 1) - 4\left( x^{2} - 1 \right) = 0\]
\[x^{2}(x - 1) - 4(x - 1)(x + 1) = 0\]
\[(x - 1)\left( x^{2} - 4x - 4 \right) = 0\]
\[x^{2} - 4x - 4 = 0\]
\[D_{1} = 4 + 4 = 8\]
\[x = 2 \pm \sqrt{8} = 2 \pm 2\sqrt{2}.\]
\[x - 1 = 0\]
\[x = 1.\]
\[Ответ:x = 2 \pm 2\sqrt{2};\ \ x = 1.\]
\[4)\ x^{3} - 6x + 5 = 0\]
\[x^{3} - x - 5x + 5 = 0\]
\[x\left( x^{2} - 1 \right) - 5(x - 1) = 0\]
\[x(x - 1)(x + 1) - 5(x - 1) = 0\]
\[(x - 1)\left( x^{2} + x - 5 \right) = 0\]
\[x^{2} + x - 5 = 0\]
\[D = 1 + 20 = 21\]
\[x = \frac{- 1 \pm \sqrt{21}}{2}.\]
\[x - 1 = 0\]
\[x = 1.\]
\[Ответ:\ x = 1;\ \ x = \frac{- 1 \pm \sqrt{21}}{2}\text{.\ }\]