\[\boxed{\mathbf{1036\ (1036).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Сумма\ всех\ двузначных\ чисел:\]
\[S_{0} = \frac{a_{1} + a_{n}}{2} \cdot n =\]
\[= \frac{10 + 99}{2} \cdot 90 =\]
\[= 109 \cdot 45 = 4905\]
\[Числа,\ кратные\ 3:\]
\[a_{n} = a_{1} + d(n - 1),\]
\[\ \ 99 = 12 + 3 \cdot (n - 1)\]
\[3 \cdot (n - 1) = 87,\ \ n - 1 = 29,\]
\[\ \ n = 30\]
\[S_{3} = \frac{a_{1} + a_{n}}{2} \cdot n = \frac{12 + 99}{2} \cdot\]
\[\cdot 30 = 111 \cdot 15 = 1665\]
\[Числа,\ кратные\ 5:\]
\[a_{n} = a_{1} + d(n - 1),\ \ \]
\[95 = 10 + 5 \cdot (n - 1)\]
\[5 \cdot (n - 1) = 85,\ \ n - 1 = 17,\]
\[\ \ n = 18\]
\[S_{5} = \frac{a_{1} + a_{n}}{2} \cdot n = \frac{10 + 95}{2} \cdot\]
\[\cdot 18 = 105 \cdot 9 = 945\]
\[Числа,\ кратные\ 15:\]
\[a_{n} = a_{1} + d(n - 1),\]
\[\ \ 90 = 15 + 15 \cdot (n - 1),\]
\[\ \ 15 \cdot (n - 1) = 75\]
\[n - 1 = 5,\ \ n = 6\]
\[S_{15} = \frac{a_{1} + a_{n}}{2} \cdot n = \frac{15 + 90}{2} \cdot\]
\[\cdot 6 = 105 \cdot 3 = 315\]
\[Тогда\ \ \ S = S_{0} - S_{3} - S_{5} +\]
\[+ S_{15} = 4905 - 1665 - 945 +\]
\[+ 315 = 2610.\]
\[Ответ:2610.\]