Условие:
1. Решите уравнение x^4+x^3-2x^2-5x-2=0.
2. Найдите решения уравнения (x+3x/(x-3))^2=4-(3x^2)/(x-3).
3. Найдите корни уравнения x(x+1)(x+2)(x+3)=120.
4. Решите неравенство x^2-5|x-5|-10x≤-25.
5. Докажите, что уравнение (x²-2x+3)(x²-6x+10)=2 не имеет корней.
6. Решите неравенство 2/(x^2+10x+27)+5/(x^2+10x+26)≥6.
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[x^{4} + x^{3} - 2x^{2} - 5x - 2 = 0\]
\[x = - 1:\]
\[разделим\ на\ (x + 1)\ и\ получим\]
\[x^{3} - 3x - 2 = 0.\]
\[x = 2:\]
\[разделим\ на\ (x - 2)\ и\ получим\]
\[x^{2} + 2x + 1 = 0\]
\[(x + 1)^{2} = 0\]
\[x + 1 = 0\]
\[x = - 1.\]
\[Ответ:x = - 1;x = 2.\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[\left( x^{\backslash x - 3} + \frac{3x}{x - 3} \right)^{2} = 4 - \frac{3x^{2}}{x - 3}\]
\[\left( \frac{x^{2} - 3x + 3x}{x - 3} \right)^{2} = 4 - 3\frac{x^{2}}{x - 3}\]
\[\left( \frac{x^{2}}{x - 3} \right)^{2} = 4 - 3\frac{x^{2}}{x - 3}\]
\[y = \frac{x^{2}}{x - 3}:\]
\[y^{2} = 4 - 3y\]
\[y^{2} + 3y - 4 = 0\]
\[D = 9 + 16 = 25\]
\[y_{1} = \frac{- 3 + 5}{2} = 1;\ \ \]
\[y_{2} = \frac{- 3 - 5}{2} = - 4\]
\[1)\ y = - 4:\]
\[\frac{x^{2}}{x - 3} = - 4\]
\[x^{2} + 4x - 12 = 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = - 2 + 4 = 2;\ \ \]
\[x_{2} = - 2 - 4 = - 6.\]
\[2)\ y = 1:\]
\[\frac{x^{2}}{x - 3} = 1\]
\[x^{2} - x + 3 = 0\]
\[D = 1 - 12 < 0\]
\[нет\ корней.\]
\[Ответ:x = 2;x = - 6.\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[x(x + 1)(x + 2)(x + 3) = 120\]
\[\left( x(x + 3) \right)\left( (x + 1)(x + 2) \right) = 120\]
\[\left( x^{2} + 3x \right)\left( x^{2} + 3x + 2 \right) = 120\]
\[y = x^{2} + 3x:\]
\[y(y + 2) = 120\]
\[y^{2} + 2y - 120 = 0\]
\[D = 1 + 120 = 121\]
\[y_{1} = - 1 + 11 = 10;\ \ \]
\[y_{2} = - 1 - 11 = - 12\]
\[1)\ y = - 12:\]
\[x^{2} + 3x = - 12\]
\[x^{2} + 3x + 12 = 0\]
\[D = 9 - 48 < 0\]
\[нет\ корней.\]
\[2)\ y = 10:\]
\[x^{2} + 3x = 10\]
\[x^{2} + 3x - 10 = 0\]
\[x_{1} + x_{2} = - 3;\ \ x_{1} \cdot x_{2} = - 10\]
\[x_{1} = - 5;\ \ x_{2} = 2.\]
\[Ответ:x = - 5;x = 2.\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[x^{2} - 5|x - 5| - 10x \leq - 25\]
\[x^{2} - 10x + 25 \leq 5|x - 5|\]
\[(x - 5)^{2} \leq 5|x - 5|\]
\[y = |x - 5|:\]
\[y^{2} \leq 5y\]
\[y^{2} - 5y \leq 0\]
\[y(y - 5) \leq 0\]
\[0 \leq y \leq 5\]
\[0 \leq |x - 5| - верно\ при\ всех\ \text{x.}\]
\[|x - 5| \leq 5\]
\[- 5 \leq x - 5 \leq 5\]
\[0 \leq x \leq 10\]
\[Ответ:x \in \lbrack 0;10\rbrack.\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[\left( x^{2} - 2x + 3 \right)\left( x^{2} - 6x + 10 \right) = 2\]
\[x^{2} - 2x + 3 = (x - 1)^{2} + 2 \geq 2\]
\[при\ x = 1;\]
\[x^{2} - 6x + 10 =\]
\[= (x - 3)^{2} + 1 \geq 1\]
\[при\ x = 3;\]
\[Получаем,\ что\ \]
\[\left( x^{2} - 2x + 3 \right)\left( x^{2} - 6x + 10 \right) \geq 2.\]
\[Значит,\ данное\ равенство\ не\ \]
\[выполняется\ и\ уравнение\ не\ \]
\[имеет\ корней.\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[\frac{2}{x^{2} + 10x + 27} + \frac{5}{x^{2} + 10x + 26} \geq 6\]
\[y = x^{2} + 10x + 26 =\]
\[= (x + 5)^{2} + 1 \geq 1:\]
\[\frac{2}{y + 1} + \frac{5}{y} \geq 6\ \ \ \ \ \ | \cdot y(y + 1)\]
\[2y + 5 \cdot (y + 1) \geq 6 \cdot \left( y^{2} + y \right)\]
\[2y + 5y + 5 \geq 6y^{2} + 6y\]
\[6y^{2} - y - 5 \leq 0\]
\[D = 1 + 120 = 121\]
\[y_{1} = \frac{1 + 11}{12} = 1;\ \ \]
\[y_{2} = \frac{1 - 11}{12} = - \frac{10}{12} = - \frac{5}{6}\]
\[6\left( y + \frac{5}{6} \right)(y - 1) \leq 0\]
\[y \in \left\lbrack - \frac{5}{6};1 \right\rbrack.\]
\[Так\ как\ y \geq 1;то\ \]
\[получаем:y = 1.\]
\[Подставим:\]
\[(x + 5)^{2} + 1 = 1\]
\[(x + 5)^{2} = 0\]
\[x + 5 = 0\]
\[x = - 5.\]
\[Ответ:x = - 5.\]