Условие:
1. Решите уравнение x^4-x^3-7x^2+x+6=0.
2. Найдите решения уравнения (x-2x/(x+2))^2=5-(4x^2)/(x+2).
3. Найдите корни уравнения (x-2)(x-1)(x+2)(x+3)=60.
4. Решите неравенство x^2-3|x+1|+2x≤-1.
5. Докажите, что уравнение (x²+2x+2)(x²-4x+5)=1 не имеет корней.
6. Решите неравенство 3/(x^2+8x+17)+4/(x^2+8x+18)≥5.
\[\boxed{\mathbf{1.}\mathbf{\ }}\]
\[x^{4} - x^{3} - 7x^{2} + x + 6 = 0\]
\[x = 1.\]
\[Разделим\ на\ (x - 1):\]
\[x^{3} - 7x - 6 = 0\]
\[x = - 1.\]
\[Разделим\ на\ (x + 1):\]
\[x^{2} - x - 6 = 0\]
\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 6\]
\[x_{1} = 3;\ \ x_{2} = - 2.\]
\[Ответ:x = \pm 1;x = - 2;x = 3.\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[\left( x^{\backslash x + 2} - \frac{2x}{x + 2} \right)^{2} = 5 - \frac{4x^{2}}{x + 2}\]
\[\left( \frac{x^{2} + 2x - 2x}{x + 2} \right)^{2} = 5 - 4 \cdot \frac{x²}{x + 2}\]
\[\left( \frac{x^{2}}{x + 2} \right)^{2} = 5 - 4 \cdot \frac{x²}{x + 2}\]
\[y = \frac{x^{2}}{x + 2}:\]
\[y^{2} = 5 - 4y\]
\[y^{2} + 4y - 5 = 0\]
\[D = 4 + 5 = 9\]
\[y_{1} = - 2 + 3 = 1;\ \ \]
\[y_{2} = - 2 - 3 = - 5\]
\[1)\ \frac{x^{2}}{x + 2} = 1\]
\[x^{2} - x - 2 = 0\]
\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 2\]
\[x_{1} = 2;\ \ x_{2} = - 1.\]
\[2)\frac{x^{2}}{x + 2} = - 5\]
\[x^{2} + 5x + 10 = 0\]
\[D = 25 - 40 < 0\]
\[нет\ корней.\]
\[Ответ:x = - 1;x = 2.\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[(x - 2)(x - 1)(x + 2)(x + 3) = 60\]
\[\left( (x - 2)(x + 3) \right)\left( (x - 1)(x + 2) \right) = 60\]
\[\left( x^{2} + x - 6 \right)\left( x^{2} + x - 2 \right) = 60\]
\[y = x^{2} + x - 6:\]
\[y(y + 4) = 60\]
\[y^{2} + 4y - 60 = 0\]
\[D = 4 + 60 = 64\]
\[y_{1} = - 2 + 8 = 6;\ \ \]
\[y_{2} = - 2 - 8 = - 10\]
\[1)\ y = - 10:\]
\[x^{2} + x - 6 = - 10\]
\[x^{2} + x + 4 = 0\]
\[D = 1 - 16 < 0\]
\[нет\ корней.\]
\[2)\ y = 6:\]
\[x^{2} + x - 6 = 6\]
\[x^{2} + x - 12 = 0\]
\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 12\]
\[x_{1} = - 4;\ \ x_{2} = 3\]
\[Ответ:x = - 4;\ \ x = 3.\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[x^{2} - 3|x + 1| + 2x \leq - 1\]
\[x^{2} + 2x + 1 \leq 3|x + 1|\]
\[(x + 1)^{2} \leq 3|x + 1|\]
\[y = |x + 1|:\]
\[y^{2} \leq 3y\]
\[y^{2} - 3y \leq 0\]
\[y(y - 3) \leq 0\]
\[0 \leq y \leq 3.\]
\[0 \leq |x + 1| \leq 3\]
\[0 \leq |x + 1| - при\ всех\ \text{x.}\]
\[|x + 1| \leq 3\]
\[- 3 \leq x + 1 \leq 3\]
\[- 4 \leq x \leq 2\]
\[Ответ:x \in \lbrack - 4;2\rbrack.\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[\left( x^{2} + 2x + 2 \right)\left( x^{2} - 4x + 5 \right) = 1\]
\[x^{2} + 2x + 2 = (x + 1)^{2} + 1 \geq 1\]
\[при\ x = - 1;\]
\[x^{2} - 4x + 5 = (x - 2)^{2} + 1 \geq 1\]
\[при\ x = 2;\]
\[Получаем,\ что:\]
\[\left( x^{2} + 2x + 2 \right)\left( x^{2} - 4x + 5 \right) > 1\]
\[Данное\ равенство\ не\ \]
\[выполняется,\ уравнение\ не\ \]
\[имеет\ корней.\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[\frac{3}{x^{2} + 8x + 17} + \frac{4}{x^{2} + 8x + 18} \geq 5\]
\[y = x^{2} + 8x + 17 =\]
\[= (x + 4)^{2} + 1 \geq 1.\]
\[\frac{3}{y} + \frac{4}{y + 1} \geq 5\ \ \ \ \ \ \ \ | \cdot y(y + 1)\]
\[3(y + 1) + 4y \geq 5\left( y^{2} + y \right)\]
\[3y + 3 + 4y \geq 5y^{2} + 5y\]
\[5y^{2} - 2y - 3 \leq 0\]
\[D = 4 + 60 = 64\]
\[y_{1} = \frac{2 + 8}{10} = 1;\ \ \]
\[y_{2} = \frac{2 - 8}{10} = - 0,6\]
\[5(y + 0,6)(y - 1) \leq 0\]
\[y \in \lbrack - 0,6;1\rbrack\text{.\ }\]
\[Так\ как\ y \geq 1;то\ \]
\[получаем:y = 1.\]
\[Подставим:\]
\[(x + 4)^{2} + 1 = 1\]
\[(x + 4)^{2} = 0\]
\[x + 4 = 0\]
\[x = - 4.\]
\[Ответ:x = - 4.\]