Условие:
1. Решите уравнение 4x^2 (1-x)=1-x.
2. Найдите корни уравнения 3/(x^2+4x)-15/(x^2-4x)=4/x.
3. Решите неравенство (x+2)(3x-6)(2x+9)≤0.
4. Найдите решение неравенства 4/(x-2)≥7/(x-3).
5. При каких значениях параметра a уравнение 4x²+3ax+1=0 имеет два различных корня?
6. Решите неравенство (3-4x)^2 (3x+2)≤0.
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\(4x^{2}(1 - x) = 1 - x\)
\[1 - x = 0\]
\[x = 1.\]
\[4x^{2} = 1\]
\[x^{2} = \frac{1}{4}\]
\[x = \pm \frac{1}{2}.\]
\[Ответ:x = 1;\ \ x = \pm \frac{1}{2}.\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[\frac{3}{x^{2} + 4x} - \frac{15}{x^{2} - 4x} = \frac{4}{x}\]
\[\frac{3^{\backslash x - 4}}{x(x + 4)} - \frac{15^{\backslash x + 4}}{x(x - 4)} = \frac{4^{\backslash x^{2} - 16}}{x}\]
\[\frac{3x - 12 - 15x - 60 - 4x^{2} + 64}{x\left( x^{2} - 16 \right)} = 0\]
\[ОДЗ:\ \ x \neq 0;\ \ \ x \neq \pm 4\]
\[- 4x^{2} - 12x - 8 = 0\ \ \ \ \ |\ :( - 4)\]
\[x^{2} + 3x + 2 = 0\]
\[D = 9 - 8 = 1\]
\[x_{1} = \frac{- 3 + 1}{2} = - 1;\ \ \ \]
\[x_{2} = \frac{- 3 - 1}{2} = - 2\]
\[Ответ:x = - 1;x = - 2.\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[(x + 2)(3x - 6)(2x + 9) \leq 0\]
\[x = - 2;\ \ x = 2;\ \ x = - 4,5\]
\[Ответ:x \in ( - \infty; - 4,5\rbrack \cup \lbrack - 2;2\rbrack.\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[\frac{4^{\backslash x - 3}}{x - 2} \geq \frac{7^{\backslash x - 2}}{x - 3}\]
\[\frac{4x - 12 - 7x + 14}{(x - 2)(x - 3)} \geq 0\]
\[\frac{- 3x + 2}{(x - 2)(x - 3)} \geq 0\]
\[x = \frac{2}{3};\ \ x = 2;\ \ x = 3\]
\[Ответ:x \in \left( - \infty;\frac{2}{3} \right\rbrack \cup (2;3).\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[4x^{2} + 3ax + 1 = 0\]
\(Уравнение\ имеет\ два\ \)
\[различных\ корня,если\ D > 0.\]
\[D = 9a^{2} - 16\]
\[9a^{2} - 16 > 0\]
\[(3a + 4)(3a - 4) > 0\]
\[a = - \frac{4}{3};\ \ a = \frac{4}{3}\]
\[Ответ:\]
\[при\ a \in \left( - \infty; - 1\frac{1}{3} \right) \cup \left( 1\frac{1}{3}; + \infty \right).\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[(3 - 4x)^{2}(3x + 2) \leq 0\]
\[(3x + 2)(3 - 4x)(3 - 4x) \leq 0\]
\[x = \frac{3}{4};\ \ x = - \frac{2}{3}\]
\[Ответ:x \in \left( - \infty; - \frac{2}{3} \right\rbrack \cup \left\{ 0,75 \right\}.\]