Условие:
1. Решите уравнение x^2 (x+1)=9(x+1).
2. Найдите корни уравнения 16/(x^2+x)-6/(x^2-x)=1/x.
3. Решите неравенство (x+3)(2x-6)(3x+4)≥0.
4. Найдите решение неравенства 3/(x+1)≤5/(x+2).
5. При каких значениях параметра a уравнение 25x²-3ax+1=0 не имеет корней?
6. Решите неравенство (4-3x)^2 (2x+3)≤0.
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[x^{2}(x + 1) = 9(x + 1)\]
\[x^{2} = 9\ \ \ \ \ \ \ \ \ \ x + 1 = 0\]
\[x = \pm 3\ \ \ \ \ \ \ \ \ x = - 1.\]
\[Ответ:x = \pm 3;\ \ x = - 1.\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[\frac{16}{x^{2} + x} - \frac{6}{x^{2} - x} = \frac{1}{x}\]
\[\frac{16^{\backslash x - 1}}{x(x + 1)} - \frac{6^{\backslash x + 1}}{x(x - 1)} - \frac{1^{\backslash x^{2} - 1}}{x} = 0\]
\[\frac{16x - 16 - 6x - 6 - x^{2} + 1}{x(x + 1)(x - 1)} = 0\]
\[ОДЗ:\ \ x \neq 0;\ \ \ x \neq \pm 1.\]
\[- x^{2} + 10x - 21 = 0\ \ \ \ \ |\ :( - 1)\]
\[x^{2} - 10x + 21 = 0\]
\[x_{1} + x_{2} = 10;\ \ \ \ x_{1} \cdot x_{2} = 21\]
\[x_{1} = 7;\ \ x_{2} = 3.\]
\[Ответ:\ \ x = 3;\ \ x = 7.\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[(x + 3)(2x - 6)(3x + 4) \geq 0\]
\[x = - 3;\ \ x = 3;\ \ \ x = - \frac{4}{3}\]
\[Ответ:x \in \left\lbrack - 3;\ - 1\frac{1}{3} \right\rbrack \cup \lbrack 3; + \infty).\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[\frac{3}{x + 1} \leq \frac{5}{x + 2}\]
\[\frac{3^{\backslash x + 2}}{x + 1} - \frac{5^{\backslash x + 1}}{x + 2} \leq 0\]
\[\frac{3x + 6 - 5x - 5}{(x + 1)(x + 2)} \leq 0\]
\[\frac{- 2x + 1}{(x + 1)(x + 2)} \leq 0\]
\[- 2x = - 1\]
\[x = \frac{1}{2} = 0,5.\]
\[x \neq - 1;\ \ x \neq - 2.\]
\[Ответ:x \in ( - 2; - 1) \cup \lbrack 0,5; + \infty).\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[25x^{2} - 3ax + 1 = 0\]
\[Уравнение\ не\ имеет\ корней,\ \]
\[если\ D < 0.\]
\[D = 9a^{2} - 100\]
\[9a^{2} - 100 < 0\]
\[(3a - 10)(3a + 10) < 0\]
\[Ответ:при\ a \in \left( - 3\frac{1}{3};3\frac{1}{3} \right)\text{.\ }\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[(4 - 3x)^{2}(2x + 3) \leq 0\]
\[(4 - 3x)(4 - 3x)(2x + 3) \leq 0\]
\[( - 3x + 4)( - 3x + 4)(2x + 3) \leq 0\]
\[x = \frac{4}{3} = 1\frac{1}{3};\ \ \ x = - 1,5\]
\[x \in ( - \infty; - 1,5\rbrack \cup \left\{ 1\frac{1}{3} \right\}.\]