Условие:
1. Решите неравенство:
а) 81 – x² > 0;
б) 6x² – x – 1 < 0;
в) 5x² + 3x + 2 > 0.
2. При каких значениях x трёхчлен x² + x – 56 принимает положительные значения?
3. Используя метод интервалов, решите неравенство (x – 16)(x + 7)(x + 1) > 0.
4. При каких значениях p уравнение 10x² + px + 40 = 0 не имеет корней?
5. Найдите область определения функции:
а) y=√(13x-5x²)
б) y=√(x^2+4x-5)/(3x-4)
\[\boxed{\mathbf{1.}\mathbf{\ }}\]
\[\textbf{а)}\ 81 - x^{2} > 0\]
\[x^{2} - 81 < 0\]
\[(x + 9)(x - 9) < 0\]
\[x \in ( - 9;9).\]
\[\textbf{б)}\ 6x^{2} - x - 1 < 0\]
\[6x^{2} - x - 1 = 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{1 + 5}{12} = \frac{1}{2} = 0,5;\]
\[x_{2} = \frac{1 - 5}{12} = - \frac{4}{12} = - \frac{1}{3}.\]
\[6\left( x + \frac{1}{3} \right)(x - 0,5) < 0\]
\[x \in \left( - \frac{1}{3};0,5 \right).\]
\[\textbf{в)}\ 5x^{2} + 3x + 2 > 0\ \]
\[5x^{2} + 3x + 2 = 0\]
\[D = 9 - 40 = - 31 < 0\]
\[Так\ как\ a = 5 > 0;\]
\[ветви\ вверх,\ тогда\ \]
\[x \in ( - \infty; + \infty).\]
\[\boxed{\mathbf{2.}\mathbf{\ }}\]
\[x^{2} + x - 56 > 0\]
\[x^{2} + x - 56 = 0\]
\[По\ теореме\ Виета:\]
\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 56\]
\[x_{1} = - 8;\ \ x_{2} = 7.\]
\[(x + 8)(x - 7) > 0\]
\[При\ x \in ( - \infty; - 8) \cup (7; + \infty).\]
\[\boxed{\mathbf{3.}\mathbf{\ }}\]
\[(x - 16)(x + 7)(x + 1) > 0\]
\[x = - 7;\ \ x = - 1;\ \ x = 16\]
\[x \in ( - 7;\ - 1) \cup (16; + \infty).\]
\[\boxed{\mathbf{4.}\mathbf{\ }}\]
\[10x^{2} + px + 40 = 0\]
\[Уравнение\ не\ имеет\ корней\ \]
\[при\ D < 0.\]
\[D = p^{2} - 1600\]
\[p^{2} - 1600 < 0\]
\[(p + 40)(p - 40) < 0\]
\[p \in ( - 40;40).\]
\[\boxed{\mathbf{5.}\mathbf{\ }}\]
\[\textbf{а)}\ y = \sqrt{13x - 5x²}\]
\[13x - 5x^{2} \geq 0\]
\[5x^{2} - 13x \leq 0\]
\[5x(x - 2,6) \leq 0\]
\[x \in \lbrack 0;2,6\rbrack.\]
\[\textbf{б)}\ y = \frac{\sqrt{x^{2} + 4x - 5}}{3x - 4}\ \]
\[3x - 4 \neq 0\]
\[3x \neq 4\]
\[x \neq \frac{4}{3} \neq 1\frac{1}{3}.\]
\[x^{2} + 4x - 5 \geq 0\]
\[D = 4 + 5 = 9\]
\[x_{1} = - 2 + 3 = 1;\]
\[x_{2} = - 2 - 3 = - 5\]
\[(x + 5)(x - 1) \geq 0\]
\[Но\ x \neq 1\frac{1}{3}:\]
\[x \in ( - \infty; - 5\rbrack \cup \left\lbrack 1;1\frac{1}{3} \right) \cup \left( 1\frac{1}{3}; + \infty \right).\]