Условие:
1. Решите неравенство:
а) x² + 4x – 32 < 0;
б) 2x² – x – 55 > 0;
в) 14x < x²
2. При каких значениях y трёхчлен 3y² + 17y – 6 принимает отрицательные значения?
3. Используя метод интервалов, решите неравенство (x – 5)(x + 8)(x + 11) < 0.
4. При каких значениях t уравнение 4x² + tx + 36 = 0 имеет два корня?
5. Найдите область определения функции:
а) y=√(6x-3x^2 )
б) y=√(x^2+2x-24)/(2x-16)
\[\boxed{\mathbf{1.}\mathbf{\ }}\]
\[\textbf{а)}\ x^{2} + 4x - 32 < 0\]
\[x^{2} + 4x - 32 = 0\]
\[D = 4 + 32 = 36\]
\[x_{1} = - 2 + 6 = 4;\]
\[x_{2} = - 2 - 6 = - 8.\]
\[(x + 8)(x - 4) < 0\]
\[x \in ( - 8;4).\]
\[\textbf{б)}\ 2x^{2} - x - 55 > 0\]
\[2x^{2} - x - 55 = 0\]
\[D = 1 + 440 = 441 = 21^{2}\]
\[x_{1} = \frac{1 + 21}{4} = \frac{22}{4} = 5,5\]
\[x_{2} = \frac{1 - 21}{4} = - \frac{20}{4} = - 5.\]
\[(x + 5)(x - 5,5) > 0\]
\[x \in ( - \infty; - 5) \cup (5,5; + \infty).\]
\[\textbf{в)}\ 14x < x²\]
\[- x^{2} + 14x < 0\]
\[x \in ( - \infty;0) \cup (14; + \infty).\]
\[\boxed{\mathbf{2.}\mathbf{\ }}\]
\[3y^{2} + 17y - 6 < 0\]
\[3y^{2} + 17y - 6 = 0\]
\[D = 289 + 72 = 361 = 19^{2}\]
\[y_{1} = \frac{- 17 + 19}{6} = \frac{2}{6} = \frac{1}{3};\]
\[y_{2} = \frac{- 17 - 19}{6} = - \frac{36}{6} = - 6\]
\[3(y + 6)\left( y - \frac{1}{3} \right) < 0\]
\[При\ y \in \left( - 6;\frac{1}{3} \right).\]
\[\boxed{\mathbf{3.}\mathbf{\ }}\]
\[(x - 5)(x + 8)(x + 11) < 0\]
\[x = - 11;\ \ x = - 8;\ \ x = 5\]
\[x \in ( - \infty; - 11) \cup ( - 8;5).\]
\[\boxed{\mathbf{4.}\mathbf{\ }}\]
\[4x^{2} + tx + 36 = 0\]
\[Уравнение\ имеет\ два\ корня,\ \]
\[если\ D > 0.\]
\[D = t^{2} - 576\]
\[t^{2} - 576 > 0\]
\[(t + 24)(t - 24) > 0\]
\[При\ t \in ( - \infty; - 24) \cup (24; + \infty).\]
\[\boxed{\mathbf{5.}\mathbf{\ }}\]
\[\textbf{а)}\ y = \sqrt{6x - 3x^{2}}\]
\[6x - 3x^{2} \geq 0\]
\[- 3x(x - 2) \geq 0\]
\[x = 0;\ \ x = 2\]
\[D(y) = x \in \lbrack 0;2\rbrack.\]
\[\textbf{б)}\ y = \frac{\sqrt{x^{2} + 2x - 24}}{2x - 16}\ \]
\[2x - 16 \neq 0\]
\[2x \neq 16\]
\[x \neq 8.\]
\[x^{2} + 2x - 24 \geq 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = - 1 + 5 = 4;\]
\[x_{2} = - 1 - 5 = - 6.\]
\[(x + 6)(x - 4) \geq 0\]
\[Но\ x \neq 8:\]
\[x \in ( - \infty; - 6\rbrack \cup \lbrack 4;8) \cup (8; + \infty).\]