\[\boxed{\mathbf{872\ (872).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 2^{- 3} + 4^{- 2} = 2^{- 3} + \left( 2^{2} \right)^{- 2} =\]
\[= 2^{- 3} + 2^{- 4} = 2^{- 4} \cdot (2 + 1) =\]
\[= \frac{3}{16}\]
\[2)\ \left( \frac{3}{5} \right)^{- 2} + ( - 1,8){^\circ} - 5^{- 1} =\]
\[= \frac{25}{9} + 1 - \frac{1}{5} = \frac{125 + 45 - 9}{45} =\]
\[= \frac{161}{45} = 3\frac{26}{45}\]
\[3)\ \left( \frac{1}{3} \right)^{- 3} \cdot \left( \frac{2}{3} \right)^{2} = \frac{3^{3} \cdot 2^{2}}{3^{2}} =\]
\[= 3 \cdot 4 = 12\]
\[4)\ 2^{- 3} - 6^{- 1} + 3^{- 2} =\]
\[= 2^{- 3} - 2^{- 1} \cdot 3^{- 1} + 3^{- 2} =\]
\[= \frac{1}{8} - \frac{1}{6} + \frac{1}{9} = \frac{54 - 72 + 48}{432} =\]
\[= \frac{30}{432} = \frac{15}{216} = \frac{5}{72}\]
\[\boxed{\mathbf{8}\mathbf{72}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ b = - 1:\]
\[4(b + 1) = 4( - 1 + 1) = 0;\]
\[b - 2 = - 1 - 2 = - 3;\]
\[4(b + 1) > b - 2.\]
\[2)\ b = 0:\]
\[4(b + 1) = 4(0 + 1) = 4;\]
\[b - 2 = 0 - 2 = - 2;\]
\[4(b + 1) > b - 2.\]
\[3)\ b = 3:\]
\[4(b + 1) = 4(3 + 1) = 16;\]
\[b - 2 = 3 - 2 = 1;\]
\[4(b + 1) > (b - 2).\]
\[Проверим:\]
\[4(b + 1) - (b - 2) =\]
\[= 4b + 4 - b + 2 = 3b + 6\]
\[3b + 6 > 0\]
\[3b > - 6\]
\[b > - 2.\]
\[Нет,\ только\ при\ b > - 2.\]