\[\boxed{\mathbf{855\ (855).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x + \frac{a}{b} = 1\ \]
\[\ x = 1 - \frac{a}{b};\]
\[2)\ \frac{1}{x} + \frac{1}{a} = b\ \]
\[\frac{1}{x} = b - \frac{1}{a}\]
\[\frac{1}{x} = \ \frac{ab - 1}{a}\]
\[\ x = \frac{a}{ab - 1}\]
\[3)\ \frac{a}{b} + \frac{x}{4} = \frac{b}{a}\]
\[\text{\ \ }\frac{x}{4} = \frac{b}{a} - \frac{a}{b}\]
\[\frac{x}{4} = \frac{b^{2} - a^{2}}{\text{ab}}\]
\[\ x = \frac{4 \cdot (b^{2} - a^{2})}{\text{ab}}\]
\[\boxed{\mathbf{8}\mathbf{5}\mathbf{5}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \left( 27 \cdot 3^{- 4} \right)^{2} = \left( 3^{2} \cdot 3^{- 4} \right)^{2} =\]
\[= \left( 3^{- 1} \right)^{2} = 3^{- 2} = \frac{1}{9}\]
\[2)\ \frac{7^{- 4} \cdot 7^{- 9}}{7^{- 12}} = \frac{7^{- 13}}{7^{- 12}} = \frac{1}{7}\]
\[3)\ \left( 10^{9} \right)^{2} \cdot 1000^{- 6} =\]
\[= 10^{18} \cdot \left( 10^{3} \right)^{- 6} =\]
\[= 10^{18} \cdot 10^{- 18} = 1\ \]