\[\boxed{\mathbf{844\ (844).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{x^{5}y^{7} - x^{3}y^{9}}{x^{3}y^{7}} =\]
\[= \frac{x^{3}y^{7}\left( x^{2} - y^{2} \right)}{x^{3}y^{7}} =\]
\[= (x - y)(x + y)\]
\[при\ \ \ \ x = - 0,2;\ \ \ y = 0,5:\]
\[( - 0,2 - 0,5)( - 0,2 + 0,5) =\]
\[= - 0,7 \cdot 0,3 = - 0,21\]
\[2)\ \frac{4a^{2} - 36}{5a^{2} - 30a + 45} =\]
\[= \frac{4 \cdot (a - 3)(a + 3)}{5 \cdot (a - 3)^{2}} =\]
\[= \frac{4 \cdot (a + 3)}{5 \cdot (a - 3)}\]
\[при\ \ \ a = 2:\]
\[\frac{4 \cdot 5}{5 \cdot ( - 1)} = - 4\]
\[3)\ \frac{(3a + 3b)^{2}}{3a^{2} - 3b^{2}} =\]
\[= \frac{9 \cdot (a + b)^{2}}{3 \cdot (a + b)(a - b)} =\]
\[= \frac{3 \cdot (a + b)}{(a - b)}\]
\[при\ \ \ a = \frac{1}{3},\ b = - \frac{1}{6}:\]
\[\frac{3 \cdot \left( \frac{2}{6} - \frac{1}{6} \right)}{\left( \frac{2}{6} + \frac{1}{6} \right)} = \frac{1}{2}\ :\frac{1}{2} = 1\]
\[4)\ \frac{20x^{2} - 140xy + 245y^{2}}{4x - 14y} =\]
\[= \frac{5 \cdot (2x - 7y)^{2}}{2 \cdot (2x - 7y)} = \frac{5 \cdot (2x - 7y)}{2}\]
\[при\ 2x - 7y = - 0,5,\]
\[2x = 7y - 0,5:\]
\[\frac{5 \cdot (7y - 0,5 - 7y)}{2} = - 1,25\]
\[\boxed{\mathbf{8}\mathbf{4}\mathbf{4}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ x\ дней\ потратил\ \]
\[на\ задание\ первый\ рабочий,\ \]
\[а\ (x + 9)\ дней - второй\ \]
\[рабочий.\ \]
\[По\ условию\ известно,\ \]
\[что\ вместе\ они\ затратили\]
\[20\ дней.\]
\[Составляем\ уравнение:\]
\[\frac{1}{x} + \frac{1}{x + 9} - \frac{1}{20} = 0;\ \ \ \ \ \ x \neq 0;\ \ \ \]
\[x \neq - 9\]
\[20 \cdot (x + 9) + 20x - x(x + 9) =\]
\[= 0\]
\[20x + 180 + 20x - x^{2} - 9x = 0\]
\[- x^{2} + 31x + 180 = 0\]
\[x^{2} - 31x - 180 = 0\]
\[D = 961 + 720 = 1681\]
\[x_{1} = \frac{31 + 41}{2} = 36\ (дней) -\]
\[потратил\ первый\ рабочий.\]
\[x_{2} = \frac{31 - 41}{2} = - 5 \Longrightarrow не\ \]
\[удовлетворяет\ условию.\]
\[36 + 9 = 45\ (дней) - потратил\ \]
\[второй\ рабочий.\]
\[Ответ:36\ дней,\ 45\ дней.\]