\[\boxed{\mathbf{779\ (779).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ (x + 3)^{4} - 3 \cdot (x + 3)^{2} - 4 =\]
\[= 0\]
\[\left\{ \begin{matrix} (x + 3)^{2} = t\ \ \ \ \ \ \\ t^{2} - 3t - 4 = 0 \\ \end{matrix} \right.\ \]
\[t_{1} + t_{2} = 3,\ \ t_{1} \cdot t_{2} = - 4,\ \ \]
\[t_{1} = 4,\ \ t_{2} = - 1\]
\[Ответ:\ x = - 1;\ x = - 5.\]
\[\left\{ \begin{matrix} (2x + 1)^{2} = t\ \ \ \ \\ t² - 10t + 9 = 0 \\ \end{matrix} \right.\ \]
\[t_{1} + t_{2} = 10,\ \ t_{1} \cdot t_{2} = 9,\ \ \]
\[t_{1} = 9,\ \ t_{2} = 1\]
\[Ответ:x = 1;\ x = - 1;x = 0;\ \]
\[x = - 2.\]
\[\left\{ \begin{matrix} (6x - 7)^{2} = t\ \ \\ t^{2} + 4t + 3 = 0 \\ \end{matrix} \right.\ \]
\[t_{1} + t_{2} = - 4,\ \ t_{1} \cdot t_{2} = 3,\ \ \]
\[t_{1} = - 3,\ \ t_{2} = - 1\]
\[Ответ:нет\ корней.\]
\[4)\ (x - 4)^{4} + 2 \cdot (x - 4)^{2} - 8 =\]
\[= 0\]
\[\left\{ \begin{matrix} (x - 4)^{2} = t\ \ \ \ \ \\ t^{2} + 2t - 8 = 0 \\ \end{matrix} \right.\ \]
\[t_{1} + t_{2} = - 2,\ \ t_{1} \cdot t_{2} = - 8,\ \ \]
\[t_{1} = - 4,\ \ t_{2} = 2\]
\[Ответ:x = 4 + \sqrt{2};\ \ \ x = 4 - \sqrt{2}.\]
\[\boxed{\mathbf{7}\mathbf{7}\mathbf{9}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[x^{2} + bx + c = 0\]
\[x_{1} \cdot x_{2} = c\]
\[x_{1} + x_{2} = - b\]
\[Если\ x_{1} = b;\ \ x_{2} = c:\]
\[bc = c,\ \ b = 1\]
\[b + c = - b \Longrightarrow c = - 2\]
\[или\ \]
\[b = c = 0\]
\[Ответ:b = 1;\ \ c = - 2\ \ \ \ или\ \ \ \]
\[b = 0;\ \ c = 0.\]