\[\boxed{\mathbf{731\ (731).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{1}{x_{1}} + \frac{1}{x_{2}} = \frac{x_{1} + x_{2}}{x_{1}x_{2}} = \frac{9}{6} = \frac{3}{2} =\]
\[= 1,5\]
\[2)\ x_{1}² + x_{2}²\ =\]
\[= x_{1}^{2} + x_{2}^{2} + 2x_{1}x_{2} - 2x_{1}x_{2} =\]
\[= \left( x_{1} + x_{2} \right)² - 2x_{1}x_{2} =\]
\[= 9^{2} - 2 \cdot 6 = 81 - 12 = 69\ \]
\[3)\ \left( x_{1} - x_{2} \right)^{2} =\]
\[= \left( x_{1} + x_{2} \right)^{2} - 4x_{1}x_{2} =\]
\[= 9^{2} - 4 \cdot 6 = 81 - 24 = 57\]
\[4)\ x_{1}³ + x_{2}³ =\]
\[= \left( x_{1} + x_{2} \right)\left( x_{1}^{2} - x_{1}x_{2} + x_{2}^{2} \right) =\]
\[= 9 \cdot (69 - 6) = 567\]
\[\boxed{\mathbf{73}\mathbf{1}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x² - (2a - 5)x - 3a^{2} + 5a =\]
\[= 0\]
\[D =\]
\[= (2a - 5)^{2} - 4 \cdot \left( - 3a^{2} + 5a \right) =\]
\[= 16a^{2} - 40a + 25 = (4a + 5)^{2}\]
\[x = \frac{(2a - 5) \pm (4a + 5)}{2}\]
\[x_{1} = \frac{6a}{2} = 3a\]
\[x_{2} = \frac{2a - 5 - 4a - 5}{2} =\]
\[= \frac{- 2a - 10}{2} = - a - 5\]
\[Ответ:x = 3a;x = \ - a - 5.\]
\[2)\ x² + (3a - 4)x - 12a = 0\]
\[D = (3a - 4)^{2} + 48a =\]
\[= 9a^{2} - 24a + 16 + 48a =\]
\[= 9a^{2} + 24a + 16 =\]
\[= (3a + 4)^{2}\]
\[x = \frac{( - 3a + 4) \pm (3a + 4)}{2}\]
\[x_{1} = \frac{- 3a + 4 + 3a + 4}{2} = \frac{8}{2} = 4\]
\[x_{2} = \frac{- 3a + 4 - 3a - 4}{2} = - \frac{6a}{2} =\]
\[= - 3a\]
\[Ответ:x = 4;\ x = - 3a.\]
\[3)\ ax² - (a + 1)x + 1 = 0\]
\[D = (a + 1)^{2} - 4a =\]
\[= a^{2} + 2a + 1 - 4a =\]
\[= a^{2} - 2a + 1 = (a - 1)^{2}\]
\[x = \frac{(a + 1) \pm (a - 1)}{2a}\]
\[если\ a \neq 0:\ \ \ \ \ x_{1} = 1;\ \ x_{2} = \frac{1}{a}.\]
\[если\ a = 0:\ - x + 1 = 0 \Longrightarrow \ \ \]
\[\Longrightarrow x = 1.\]
\[Ответ:\ \ x = 1;\ \ \ x = \frac{1}{a}.\]