\[\boxed{\mathbf{730\ (730).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 7x² + 11x - 18 = 0\]
\[x_{1} + x_{2} = - \frac{11}{7},\ \ \]
\[x_{1} = - \frac{18}{7} = - 2\frac{4}{7}\]
\[x_{1} \cdot x_{2} = - \frac{18}{7},\ \ x_{2} = 1\]
\[Ответ:\ \ x = - 2\frac{4}{7};x = 1.\]
\[2)\ 9x² - 5x - 4 = 0\]
\[x_{1} + x_{2} = \frac{5}{9},\ \ x_{1} = - \frac{4}{9}\]
\[x_{1} \cdot x_{2} = - \frac{4}{9},\ \ x_{2} = 1\]
\[Ответ:\ x = - \frac{4}{9};x = 1.\]
\[\boxed{\mathbf{73}\mathbf{0}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x² + (3a + 1)x + 2a² + a = 0\]
\[D = (3a + 1)^{2} - 4 \cdot \left( 2a^{2} + a \right) =\]
\[= 9a^{2} + 6a + 1 - 8a^{2} - 4a =\]
\[= a^{2} + 2a + 1 = (a + 1)^{2}\]
\[x = \frac{( - 3a - 1) \pm (a + 1)}{2}\]
\[x_{1} = \frac{- 3a - 1 + a + 1}{2} = \frac{- 2a}{2} =\]
\[= - a\]
\[x_{2} = \frac{- 3a - 1 - a - 1}{2} =\]
\[= \frac{- 4a - 2}{2} = - 2a - 1\]
\[Ответ:\ x = - a;x = - 2a - 1.\]
\[2)\ x² - (2a + 4)x + 8a = 0\]
\[D = (2a + 4)^{2} - 32a =\]
\[= 4a^{2} + 16a + 16 - 32a =\]
\[= 4a² - 16a + 16 = (2a - 4)²\]
\[x = \frac{(2a + 4) \pm (2a - 4)}{2}\]
\[x_{1} = \frac{2a + 4 + 2a - 4}{2} = \frac{4a}{2} = 2a\]
\[x_{2} = \frac{2a + 4 - 2a + 4}{2} = \frac{8}{2} = 4\]
\[Ответ:x = 2a;x = 4.\]
\[3)\ a²x² - 24ax - 25 = 0\]
\[D = 576a^{2} + 100a^{2} = 676a^{2} =\]
\[= (26a)^{2}\]
\[x = \frac{24a \pm 26a}{2a^{2}}\]
\[если\ a = 0,\ то\ корней\ нет;\]
\[если\ a \neq 0:\]
\[\ x_{1} = \frac{50a}{2a^{2}} = \frac{25}{a};\ \ \]
\[x_{2} = - \frac{2a}{2a^{2}} = - \frac{1}{a}.\]
\[Ответ:при\ a = 0\ нет\ корней;\ \ \ \]
\[при\ a \neq 0:\ x = \frac{25}{a},\ x = - \frac{1}{a}.\ \]
\[D = 4 \cdot (a + 1)^{2} - 4 \cdot (6a - 3) =\]
\[= 4a^{2} + 8a + 4 - 24a + 12 =\]
\[= 4a^{2} - 16a + 16 = (2a - 4)^{2}\]
\[x = \frac{(2a + 2) \pm (2a - 4)}{6 \cdot (2a - 1)},\ \ \]
\[2a - 1 \neq 0,\ \ a \neq \frac{1}{2}\]
\[x_{1} = \frac{4a - 2}{6 \cdot (2a - 1)} =\]
\[= \frac{2 \cdot (2a - 1)}{6 \cdot (2a - 1)} = \frac{1}{3}\]
\[x_{2} = \frac{6}{6} = 1\]
\[Ответ:если\ a = \frac{1}{2}:корней\ нет;\]
\[если\ a \neq \frac{1}{2}:\ x = \frac{1}{3},\ x = 1.\]