\[\boxed{\mathbf{728\ (728).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[x^{2} + 4x + n = 0\]
\[3 \cdot \left( - 4 - x_{2} \right) - x_{2} = 8\]
\[- 12 - 3x_{2} - x_{2} = 8\]
\[- 4x_{2} = 20\]
\[x_{2} = - 5\]
\[x_{1} = - 4 - x_{2} = - 4 + 5 = 1\]
\[x_{1}x_{2} = n\]
\[- 5 \cdot 1 = - 5\]
\[Ответ:\ x_{1} = 1;\ \ x_{2} = - 5;\ \ \]
\[n = - 5.\]
\[\boxed{\mathbf{72}\mathbf{8}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Уравнение\ не\ имеет\ корней\ \]
\[при\ D < 0.\]
\[1)\ x² + mx + m² + 1 = 0\]
\[D = m^{2} - 4 \cdot \left( m^{2} + 1 \right) =\]
\[= m^{2} - 4m^{2} - 4 =\]
\[= - 3m^{2} - 4 < 0\]
\[2)\ x² - 2mx + 2m^{2} + 9 = 0\]
\[D = 4m^{2} - 4 \cdot \left( 2m^{2} + 9 \right) =\]
\[= 4m^{2} - 8m^{2} - 36 =\]
\[= - 4m^{2} - 36 < 0\]