\[\boxed{\mathbf{712\ (712).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x² + bx + c = 0\]
\[x_{1} = - 2\]
\[x_{2} = 0,5\]
\[x_{1} + x_{2} = - b = - 2 + 0,5 = - 1,5,\ \ \]
\[b = 1,5\]
\[x_{1} \cdot x_{2} = c = - 2 \cdot 0,5 = - 1,\ \ \]
\[c = - 1\]
\[Ответ:b = 1,5;\ \ c = - 1.\]
\[2)x² + bx + c = 0\ \]
\[x_{1} = - 10\]
\[x_{2} = - 20\]
\[x_{1} + x_{2} = - b = - 10 - 20 =\]
\[= - 30,\ \ b = 30\]
\[x_{1} \cdot x_{2} = c = - 10 \cdot ( - 20) = 200,\ \ \]
\[c = 200\]
\[Ответ:\ b = 30;\ \ c = 200.\]
\[\boxed{\mathbf{71}\mathbf{2}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \left\{ \begin{matrix} y^{2} - x = 14 \\ x - y = - 2\ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = y - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y^{2} - (y - 2) = 14 \\ \end{matrix} \right.\ \]
\[y^{2} - y + 2 - 14 = 0\]
\[y^{2} - y - 12 = 0\]
\[y_{1} + y_{2} = 1;\ \ \ y_{1} \cdot y_{2} = - 12\]
\[y_{1} = - 3;\ \ \ \ y_{2} = 4.\]
\[x_{1} = y - 2 = - 3 - 2 = - 5;\]
\[x_{2} = y - 2 = 4 - 2 = 2.\]
\[Ответ:( - 5; - 3);(2;4).\]
\[2)\ \left\{ \begin{matrix} y - 2x^{2} = 2 \\ 3x + y = 1\ \ \\ \end{matrix} \right.\ \text{\ \ }\]
\[\left\{ \begin{matrix} y = 1 - 3x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (1 - 3x) - 2x^{2} = 2 \\ \end{matrix} \right.\ \]
\[1 - 3x - 2x^{2} = 2\]
\[2x^{2} + 3x + 1 = 0\]
\[D = 9 - 8 = 1\]
\[x_{1} = \frac{- 3 + 1}{4} = - \frac{2}{4} = - 0,5;\]
\[x_{2} = \frac{- 3 - 1}{4} = - 1;\]
\[y_{1} = 1 - 3x = 1 + 1,5 = 2,5;\]
\[y_{2} = 1 - 3x = 1 + 3 = 4.\]
\[Ответ:( - 0,5;2,5);( - 1;4).\]