\[\boxed{\mathbf{704\ (704).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ Предположим,\ что\ мы\ \]
\[не\ можем\ выбрать\ 11\ кубиков\ \]
\[одного\ цвета,тогда\ \]
\[101 = 10 \cdot 10 + 1.\]
\[Мы\ выбираем\ 10\ кубиков\ \]
\[одного\ цвета\ из\ 10\ и\ 1\ кубик\ \]
\[11\ цвета.\]
\[Следовательно,\ мы\ выбрали\ \]
\[11\ кубиков\ разных\ цветов.\]
\[2)\ Предположим,\ что\ мы\ \]
\[не\ можем\ выбрать\ 11\ кубиков\ \]
\[разных\ цветов,тогда\ мы\ берем\ \]
\[11\ кубиков\ одного\ цвета:\]
\[11 + 10 \cdot 10 = 111.\]
\[\boxed{\mathbf{704.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ a - одно\ число,\ \]
\[тогда\ (a - 8) - другое\ число.\ \]
\[Известно,\ что\ произведение\ \]
\[этих\ чисел\ равно\ 84.\]
\[Составим\ уравнение:\]
\[a(a - 8) = 84\]
\[a^{2} - 8a - 84 = 0\]
\[D = 64 + 4 \cdot 84 = 400\]
\[a = \frac{8 \pm \sqrt{400}}{2} = \frac{8 \pm 20}{2}\]
\[a_{1} = 14,\ \ {a`}_{1} = 14 - 8 = 6\]
\[a_{2} = - 6,\ \ a`_{2} = - 6 - 8 = - 14\]
\[Ответ:\ - 14\ и - 6;\ \ 14\ и\ 6.\]