\[\boxed{\mathbf{698\ (698).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\frac{\left( a^{- 3} \right)^{3}}{a^{- 2} \cdot a^{- 5}} = \frac{a^{- 9}}{a^{- 7}} = \frac{a^{7}}{a^{9}} = \frac{1}{a^{2}};\ \ \]
\[при\ a = \frac{1}{3}:\]
\[\frac{1}{a^{2}} = \frac{1}{\left( \frac{1}{3} \right)^{2}} = 1\ :\frac{1}{9} = 9.\]
\[\boxed{\mathbf{6}\mathbf{9}\mathbf{8}\mathbf{\text{.\ }}Еуроки - \ ДЗ\ без\ мороки}\]
\[1)\ 6x² - 2 = 5 - x\]
\[6x^{2} + x - 7 = 0\]
\[D = 1 + 4 \cdot 6 \cdot 7 = 169\]
\[x = \frac{- 1 \pm \sqrt{169}}{12} = \frac{- 1 \pm 13}{12}\]
\[x_{1} = 1\]
\[x_{2} = - \frac{7}{6} = - 1\frac{1}{6}\]
\[Ответ:x = 1;\ x = - 1\frac{1}{6}.\]
\[2)\ y - 6 = y^{2} - 9y + 3\]
\[- y^{2} + 10y - 9 = 0\]
\[y^{2} - 10y + 9 = 0\]
\[D = 100 - 36 = 64\]
\[y = \frac{10 \pm \sqrt{64}}{2} = \frac{10 \pm 8}{2}\]
\[y_{1} = 9\]
\[y_{2} = 1\]
\[Ответ:y = 1;y = 9.\]
\[3)\ 4m² + 4m + 2 =\]
\[= 2m² + 10m + 8\]
\[2m^{2} - 6m - 6 = 0\]
\[D = 36 + 48 = 84\]
\[m = \frac{6 \pm 2\sqrt{21}}{2 \cdot 2} = \frac{3 \pm \sqrt{21}}{2}\]
\[Ответ:\ m = \frac{3 \pm \sqrt{21}}{2}.\]