\[\boxed{\mathbf{697\ (697).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\left( \frac{a + b}{a} - \frac{4b}{a + b} \right) \cdot \ \frac{a + b}{a - b} =\]
\[= \frac{(a + b)^{2} - 4ab}{a(a + b)} \cdot \ \frac{a + b}{a - b} =\]
\[= \frac{a^{2} + 2ab + b - 4ab}{a(a + b)} \cdot \ \frac{a + b}{a - b} =\]
\[= \frac{(a - b)²(a + b)}{a(a + b)(a - b)} = \frac{a - b}{a}\]