\[\boxed{\mathbf{670\ (670).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 2x² + x\sqrt{5} - 15 = 0\]
\[D = \left( \sqrt{5} \right)^{2} + 4 \cdot 2 \cdot 15 =\]
\[= 5 + 120 = 125\]
\[x = \frac{- \sqrt{5} \pm \sqrt{125}}{4} = \frac{- \sqrt{5} \pm 5\sqrt{5}}{4}\]
\[x_{1} = \frac{4\sqrt{5}}{4} = \sqrt{5}\]
\[x_{2} = \frac{- 6\sqrt{5}}{4} = \frac{- 3\sqrt{5}}{2} = - 1,5\sqrt{5}\]
\[Ответ:x = \sqrt{5};\ x = - 1,5\sqrt{5}.\]
\[2)\ x² - x\left( \sqrt{6} - 1 \right) - \sqrt{6} = 0\ \]
\[D = \left( \sqrt{6} - 1 \right)^{2} + 4\sqrt{6} =\]
\[= 6 - 2\sqrt{6} + 1 + 4\sqrt{6} =\]
\[= 2\sqrt{6} + 7 = \left( \sqrt{6} + 1 \right)^{2}\]
\[x = \frac{\left( \sqrt{6} - 1 \right) \pm \sqrt{\left( \sqrt{6} + 1 \right)^{2}}}{2} =\]
\[= \frac{\left( \sqrt{6} - 1 \right) \pm (\sqrt{6} + 1)}{2}\ \]
\[x_{1} = \sqrt{6},\ \ x_{2} = - 1\]
\[Ответ:\ x = - 1;x = \sqrt{6}.\]
\[3)\ \frac{x^{2} - 4}{8} - \frac{2x + 3}{3} = - 1\]
\[\frac{x^{2} - 4}{8} - \frac{2x + 3}{3} + 1 = 0\]
\[3x^{2} - 16x - 12 = 0\]
\[D = 256 + 4 \cdot 3 \cdot 12 = 400\]
\[x = \frac{16 \pm \sqrt{400}}{6} = \frac{16 \pm 20}{6}\]
\[x_{1} = 6,\ \ x_{2} = - \frac{2}{3}\]
\[Ответ:\ x = - \frac{2}{3};x = 6.\]
\[4)\ \frac{4x^{2} + x}{3} - \frac{x^{2} + 17}{9} = \frac{5x - 1}{6}\]
\[\frac{4x^{2} + x}{3} - \frac{x^{2} + 17}{9} - \frac{5x - 1}{6} = 0\]
\[\frac{22x^{2} - 9x - 31}{18} = 0\ \ \ \ | \cdot 18\]
\[22x^{2} - 9x - 31 = 0\]
\[D = 81 + 4 \cdot 22 \cdot 31 = 2809\]
\[x = \frac{9 \pm \sqrt{2809}}{44} = \frac{9 \pm 53}{44}\]
\[x_{1} = \frac{31}{22} = 1\frac{9}{22},\ \ x_{2} = - 1\]
\[Ответ:x = 1\frac{9}{22};\ x = - 1.\]
\[\boxed{\mathbf{6}\mathbf{7}\mathbf{0}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x^{2} - nx + 3 = 0;\ \ \ x = 6\]
\[36 - 6n + 3 = 0\]
\[6n = 39\]
\[n = \frac{39}{6} = 6,5\]
\[Ответ:при\ n = 6,5.\]
\[2)\ nx^{2} - 8x + 10 = 0;\ \ \ x = 0,5\]
\[0,25n - 4 + 10 = 0\]
\[0,25n = - 6\]
\[n = - 24\]
\[Ответ:при\ n = - 24.\]