\[\boxed{\mathbf{651\ (651).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{3 - 2a}{2a} - \frac{1 - a^{2}}{a^{2}} =\]
\[= \frac{3a - 2a^{2} - 2 + 2a^{2}}{2a^{2}} = \frac{3a - 2}{2a^{2}}\]
\[2)\ \frac{a^{2} - 6b^{2}}{3b} + 2b =\]
\[= \frac{a^{2} - 6b^{2} + 6b^{2}}{3b} = \frac{a^{2}}{3b}\]
\[3)\ \frac{4}{c^{2} - 4c} - \frac{c + 4}{c^{2} - 16} =\]
\[= \frac{4}{c(c - 4)} - \frac{c + 4}{(c - 4)(c + 4)} =\]
\[= \frac{4c + 16 - c^{2} - 4c}{c(c - 4)(c + 4)} =\]
\[= \frac{- c^{2} + 16}{c(c - 4)(c + 4)} =\]
\[= \frac{(4 - c)(4 + c)}{c(c - 4)(c + 4)} = - \frac{1}{c}\]
\[4)\ \frac{56a^{5}}{b^{4}} \cdot \frac{b^{2}}{14b^{5}} = \frac{56a^{5} \cdot b^{2}}{b^{4} \cdot 14b^{5}} =\]
\[= \frac{4a^{5}}{b^{7}}\]
\[5)\ \frac{72a^{3}b}{c}\ :\left( 27a^{2}b \right) =\]
\[= \frac{72a^{3}b}{c \cdot 27a^{2}b} = \frac{8a}{3c}\]
\[6)\ \frac{4a^{2} - 1}{a^{2} - 9}\ :\frac{10a + 5}{a + 3} =\]
\[= \frac{(2a - 1)(2a + 1)(a + 3)}{(a - 3)(a + 3) \cdot 5(2a + 1)} =\]
\[= \frac{2a - 1}{5a - 15}\]
\[\boxed{\mathbf{6}\mathbf{5}\mathbf{1}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x = 0 \Longrightarrow \ линейное\ \]
\[уравнение.\]
\[2)\ x² = 0\ \ \]
\[a = 1,\ \ b = 0,\ \ c = 0.\]
\[3)\ x² + x = 0,\ \ \]
\[a = 1,\ \ b = 1,\ \ c = 0.\]
\[4)\ x² + 1 = 0,\ \ \]
\[a = 1,\ \ b = 0,\ \ c = 1.\]
\[5)\ x² - 4x + 2 = 0,\ \ \]
\[a = 1,\ \ b = - 4,\ \ c = 2.\]
\[6)\ 3x³ - x^{2} + 6 = 0 \Longrightarrow\]
\[\Longrightarrow не\ квадратное\ уравнение.\]
\[7) - 2x^{2} + 7x - 8 = 0,\ \ \]
\[a = - 2,\ \ b = 7,\ \ c = - 8.\]
\[8)\ x³ - x - 9 = 0 \Longrightarrow не\ \]
\[квадратное\ уравнение.\]
\[9)\ 6 - x^{2} + 4x = 0,\ \ \]
\[a = - 1,\ \ b = 4,\ \ c = 6.\]
\[10) - x^{2} - 2x + 3 = 0,\ \ \]
\[a = - 1,\ \ b = - 2,\ \ c = 3.\]