\[\boxed{\mathbf{633\ (633).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{x^{2} - 8x}{6} = x\ \ \ | \cdot 6\]
\[x^{2} - 8x = 6x\]
\[x^{2} - 14x = 0\]
\[x(x - 14) = 0\]
\[x = 0,\ \ x = 14\]
\[Ответ:x = 0;x = 14.\]
\[2)\ \frac{x^{2} - 3}{5} - \frac{x^{2} - 1}{2} = 2\]
\[\frac{2x^{2} - 6 - 5x^{2} + 5}{10} = 2\ \ \ | \cdot 10\]
\[- 3x^{2} - 1 = 20\]
\[- 3x^{2} = 21\]
\[x^{2} = - 7\]
\[Ответ:корней\ нет.\]
\[\boxed{\mathbf{63}\mathbf{3}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{\left( \sqrt{5} - 4 \right)^{2}} = \left| \sqrt{5} - 4 \right| =\]
\[= 4 - \sqrt{5}\]
\[2)\ \sqrt{\left( \sqrt{8} - 3 \right)^{2}} - \sqrt{\left( \sqrt{2} - 3 \right)^{2}} =\]
\[= \left| \sqrt{8} - 3 \right| - \left| \sqrt{2} - 3 \right| =\]
\[= - \sqrt{8} + 3 - 3 + \sqrt{2} =\]
\[= \sqrt{2} - \sqrt{8} = \sqrt{2} - 2\sqrt{2} = - \sqrt{2}\]